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Abstract

Going into the third trading phase of the European Union Emissions Trading
System (EU ETS), the allocation of gratuitous permits became partly output-
based. Output-based allocation creates an implicit subsidy to output, and since
the emission cap is �xed the greenhouse gas emission intensity of �rms in the
EU ETS is expected to decrease. Using data for 338 Norwegian industrial �rms,
we investigate the impact of output-based allocation on the emission intensity of
�rms in the EU ETS. Based on observable characteristics, we estimate a propen-
sity score for participation in the EU ETS for each �rm. By matching ETS and
non-ETS �rms on this score and applying a di�erence-in-di�erence approach,
we �nd that the allocation reform has not had a statistically signi�cant impact
on emission intensity.
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Sammendrag

Fra og med den tredje fasen i EUs klimakvotehandelsystem (EU ETS) er al-
lokering av gratiskvoter delvis basert på produksjonmengde. Produksjonsbasert
allokering skaper en implisitt subsidie til produksjon, og siden utslippstaket er
fastsatt forventes det at utslippsintensiteten til bedrifter i EU ETS vil reduseres.
Ved å bruke data for 338 norske industribedrifter på fastlandet undersøker vi
e�ekten av produksjonsbasert allokering på utslippsintensiteten til bedrifter i
EU ETS. Vi estimerer først sannsynligheten (propensity score) for deltakelse i
EU ETS for hver bedrift basert på observerbare karaktertrekk. Ved å matche
deltakere og ikke-deltakere basert på denne sannsynligheten og ved å anvende
en di�erence-in-di�erence-estimator, �nner vi at allokeringsreformen ikke har
hatt en statistisk signi�kant e�ekt på utslippsintensitet.
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1 Introduction

1.1 Short background

Our consumption and production patterns are causing greenhouse gases (GHG)
to accumulate in the atmosphere at volumes that lead to climate changes with
detrimental impacts on human welfare. In economics, the atmosphere is a classic
example of a global common good in its function as a GHG sink: Actors cannot
be excluded from using it, but overuse will cause the good to deteriorate. While
the bene�ts of using the atmosphere as a GHG sink go to the emitter, the
damages are incurred by all those who use the good. This has led to higher
emissions than what would have been the case if each emitter had to bear the
brunt of the damages caused by their own emissions. The emission of GHGs,
then, carries with it a negative externality. The size of the externality is highly
uncertain. Tol (2009) found in his meta-analysis that the damage cost is 48 euro
per ton emitted CO2-equivalent, which if accurate is a strong call for action.
Since GHGs do not respect international borders, international cooperation on
emission reduction is necessary. An often mentioned, but arbitrary, goal is to
prevent the global average temperatures from increasing by more than 2° Celsius
by the end of the century compared to pre-industrial levels. In order to reach
this goal cost-e�ectively, emission reductions should be done by those who can
do it most cheaply.

In economic literature, one way to achieve cost-e�ectiveness is to set a global
cap on emissions and establish a market where rights to emit are traded. This
is called an emissions trading system (ETS) or a cap-and-trade system. In an
ETS, emitters are required to surrender an emission permit for every unit of
GHG or CO2-equivalents they release. The total number of permits correspond
to the emission cap. At present there are 17 operating ETSs around the world
for carbon trading (ICA, 2015). They di�er widely in size and design. The
European Union Emissions Trading System is by far the largest in terms of
emissions. It is roughly four times the size of the second largest, the South
Korean ETS. The systems also di�er in sectors covered, GHGs covered and in
method of permit allocation. The allocation method is an important aspect
of an ETS because it can a�ect its e�ciency (Böhringer & Lange, 2005). The
choice of allocation method also has distributional impacts. Below are the main
approaches to permit allocation:

� Auctioning

� Allocation based on historical emissions (grandfathering)

� Output-based allocation (OBA)

According to traditional economic theory, auctioning and grandfathering yield
the same cost-e�ective outcome if the grandfathering is done in a lump sum
manner1(Montgomery, 1972). It is then equivalent to receiving an implicit lump

1Independent of the action of the �rm.
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sum subsidy. Under OBA, �rms can in�uence allocation by adjusting their
output. This has been shown to increase the welfare costs of complying with an
emission target (Golombek et al., 2013).

The allocation method in the EU ETS does not �t perfectly to any of these
categories. In the �rst two trading phases of the EU ETS, permits were mostly
grandfathered and countries were allowed to have an auctioning share of only
5-10%2 However, before the start of the third phase the EU reformed the al-
location system. Firstly, auctioning became the default method of allocation
(European Commission, 2009). In 2013 40% of allowances were auctioned. This
number is set to reach 70% by the end of phase 3 and 100% by 2027. Secondly,
gratuitous allocation of permits was to be based historical production activity
levels multiplied by a product-speci�c benchmark, i.e. partly output-based.

1.2 Problem statement

In this thesis we will evaluate the e�ect of allocation reform in the EU ETS -
speci�cally the introduction of output-based allocation of gratuitous permits -
on emission intensity3 using data on Norwegian �rms.

1.3 Hypothesis

Going into the third phase of the EU ETS, the allocation of gratuitous permits
has become partly output-based. This means that increased output leads to
increased allocation. Since gratuitous allocation functions as a subsidy, it follows
that production will likely increase. The emission cap is �xed. We therefore
hypothesize that the reforms have lead to a decrease in emission intensity.

1.4 Structure

Section 2 provides background information on the EU ETS. Section 3 �rst maps
out economic theory that is relevant to the thesis and is followed by a literature
review. In section 4 we present the data set and research design. Results will be
presented in section 5 along with a discussion. Finally, section 6 will conclude
the thesis.

2Norway was allowed a larger share.
3De�ned as the ratio of emissions to employees.
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2 Background

In this section we will �rst recap the events leading to the creation of the EU
ETS. Then we will go over the three phases of the EU ETS one by one.

2.1 General Background

Leaders and representatives from across the world met in Rio De Janeiro in 1992
to discuss global climate change. It was the �rst in a series of conferences that
led to creation of the Kyoto Protocol which came into force in 2005. With few
exceptions, notably the United States, most developed countries committed to
legally binding reduction in GHG emissions.

The location of emission reductions does not a�ect the climate impact. To
minimize the cost of global action, reduction should therefore be done by those
who can do it at least cost. At the same time, the distribution of costs must be
fair to secure legitimacy for the system. Three mechanisms were introduced to
facilitate e�ciency, while preserving equity: 1) Emissions trading, 2) The Clean
Development Mechanism (CDM), where industrialized countries and economies
in transition (Annex I countries) can reach part of their commitment by support-
ing projects in non-Annex I countries that yield additional emission reductions
and 3) Joint Implementation (JI), where Annex-I countries can reach part of
their commitment by supporting such projects in other Annex-I countries. Ar-
ticle 4 of the Kyoto Protocol allows for Annex-I countries to pool their emission
abatement commitments into a collective commitment (UNFCCC, 1998). This
is what the European Union did when they created the EU ETS.

2.2 The European Union Emissions Trading System

Creating a collective commitment allowed for more �exibility within the EU on
how the commitment was met. Around 11000 installations are included in the
EU ETS, which covers about 45% of EU GHG emissions. The 140 Norwegian
installations account for about 50% of Norwegian GHG emissions.

2.2.1 Phase I

The EU ETS was put into e�ect on January 1st 2005. This was a trial phase
intended to establish and test the necessary infrastructure and rules rather than
to achieve large emission reductions (Hood, 2010). CO2-emissions from several
sectors that are energy-intensive in production were included and can be seen in
Table 1. Participating countries were allowed to auction o� a maximum of 5%
of the permits, while the rest had to be grandfathered (European Commision,
2003). Throughout the �rst phase, only about 1% of allocations were auctioned
o�. Further, every country made a National Allocation Plan (NAP) that had to
be approved by the European Commission. In the NAPs, countries determine
how to allocate permits and how to treat new entrants to the market and �rms
that exit the market. One requirement was that the emission caps were set low
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enough to satisfy the Kyoto commitments. The sum of these targets became
the collective EU emission cap. Allocation was done using activity-based data
from the European Environment Agency (EEA), which turned out to be too
high compared with real emissions. Evidence has been found that some over-
allocation of permits did occur (Ellerman & Buchner, 2008). Permit prices were
close to 30 euro/ton at the onset of phase I, but fell sharply when it became
apparent that emission levels - and in extension, demand for permits - had been
overestimated. Since permits from the �rst phase could not be used in the second
(banking), permit prices dropped sharply towards the end of the �rst phase.
Despite this, emission abatement is estimated to have been at between 2% and
5% (Hood, 2010; Ellerman & Buchner, 2008). In the �rst phase, installations
were allowed to make use of the CDM (European Commission, 2004), but actual
use was limited .

Norway established its own ETS in 2005 which was similar in design to the
EU ETS, but not fully connected: Norwegian �rms could purchase permits in
the EU permit market, but EU �rms could not purchase Norwegian permits.
Allocation of permits was done gratuitously by grandfathering, and new entrants
were also granted free permits. The Norwegian ETS did not cover any sector
that were already regulated by a CO2 charge4. It covered around 11% of national
emissions. As in the EU ETS, permit prices collapsed in the Norwegian ETS at
the end of phase I. In Figure 1 we can see that the number of permits exceeded
emissions every year in the �rst phase. It is not straightforward determining
whether this is due to over-allocation or due to abatement. Since free allocation
was based on the period 1998-2001, it is not unlikely that some abatement could
have happened in the years between. The Norwegian Environment Agency
(2008) argue that the disparity is due to a combination of emission reduction,
lower-than-expected production, mild winters and new entrants that started up
later than expected.

2.2.2 Phase II

Phase II lasted from 2008 to 2012 and coincided with the �rst commitment
period of the Kyoto Protocol. The new union-wide cap was set 6.5% below 2005
emissions to avoid over-allocation. Aviation was incorporated in 2012 so that all
air tra�c within the EU is regulated within the ETS. Since phase II coincided
with the �rst Kyoto commitment period, countries were allowed to purchase
CDM and JI o�sets to settle their accounts, but only a maximum of 50% of
the reductions could be covered by these mechanisms in the period 2008-2020.
Banking of permits was allowed between phase II and phase III. Countries still
had to create NAPs. In the second phase the cap on the auctioning of permits
was increased to 10%, but only 3% were auctioned o� (Stenqvist & Å hman,
2014).

The Norwegian system became part of the EU ETS in 2008, with certain
adaptions5. Countries were allowed to unilaterally opt in the inclusion of ni-

4O�shore, wood processing and �shmeal sectors were covered by a CO2 charge.
5For instance, EEA-EFTA countries were allowed a higher share of auctioning.
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Figure 1: Emissions and allocation to Norwegian �rms

trous oxide from nitric acid production. Norway decided to opt in along with
Austria and the Netherlands6. Following the inclusion in the EU ETS, more
Norwegian sectors were incorporated, including the o�shore, petrochemical and
wood processing sectors. The incorporation of new sectors meant that the Nor-
wegian cap grew from 6 to 15 MtCO2e/year. This increase came mainly from
the o�shore sector. In phase II only 30% of Norwegian �rms' emissions were
covered by gratuitous allocation. This is because the o�shore sector did not
receive any gratuitous allocation. As we can see in Figure 1, the rule of no
allocation to o�shore is the main reason why emissions are higher than the
allocation, but it is also worth noting that allocation to mainland �rms were
lower than emissions. Gratuitous allocation was based on actual emissions in
the base period 1998-2001. For energy-related emissions, �rms were allocated
87% of emissions in the base period, while 100% were allocated for process-
related emissions (Norwegian Ministry of the Environment, 2008b). The rules
for new entrants changed so that only highly e�cient heat and power plants
were granted gratuitous allocation.

6This meant the inclusion of two Yara installations
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2.2.3 Phase III

The third trading phase began in 2013 and will last until 2020. The length
of each trading period was increased to 8 years to secure more stability and
predictability. Several other reforms were made to the EU ETS going into the
third phase. Phase III saw the inclusion of emission of PFC gases in the produc-
tion of aluminium and ferroalloys as well as N2O from nitric acid production.
The emission cap is to be reduced by 1.74% yearly, to reach the goal of 20%
lower GHG emissions by 2020. In addition, the share of auctioning will increase.
The largest reform is arguably the removal of NAPs. The NAP system from
phase I and II, with di�erent allocation rules in each country, meant that �rms
competed under di�erent conditions. Harmonizing rules removed this problem,
while removing unnecessary bureaucracy. Permit allocation is now coordinated
by the European commission and rules are harmonized for auctions, allocation,
treatment of new actors and criteria for gratuitous allocation. The new rules
means that auctioning is the new default method of allocation. Whereas 90%
of permits were allocated gratuitously based on historical emissions in the �rst
two phases, about 50% of permits were auctioned o� in 2013. The power sector
does not receive any gratuitous permits. Firms that are at signi�cant risk of
carbon leakage are still given permits gratuitously and the rules for gratuitous
allocation have been changed. Several factors determine the amount of free
permits an emitter receives:

� Benchmark: The starting point for the calculation of a benchmark is the
average performance of the 10% most e�cient installations in a sector or
sub-sector in terms of emissions per produced unit (European Commission,
2009). If this cannot be calculated, there are several �fallback� methods:
1) A heat benchmark, 2) a fuel benchmark and if all these fail, 3) allocation
of 97% of historical emissions.

� Historical production activity level: Installations get to choose between
the highest value of 2005-08 and 2009-10 medians of production.

� Allocation reduction factor: This factor is applied to the �rms that are
not at signi�cant risk of carbon leakage7.

� Cross-sectoral correction factor: Because allocation is now partly output
based, this factor is applied to ensure that the total amount of gratuitous
allocations will not exceed the maximum limit, i.e. the emission cap.

Norway was fully integrated in the EU ETS in phase III. In Figure 1 we can
see a dramatic increase in the allocation of permits to Norwegian �rms relative
to emissions in phase III. This is mainly because the o�shore sector is granted
gratuitous allocation of permits under the harmonized rules. We also see that
the harmonized rules have contributed to a decrease of around 9% in allocation
to mainland �rms between 2012 and 2013 if we ignore the new sectors that were
incorporated.

7The factor is 1 for �rms at risk of carbon leakage.
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Table 1: Comparison of phases in the EU ETS
Phase I Phase II Phase III

Years 2005-2007 2008-2012 2013-2020

Number of countries 25 30 31

GHGs included CO2 CO2

N2O opt-in

CO2

N2O

PFC from aluminium

GHG-emissions covered 41% (11%)b 40% (40%) 45% (50%)

Average annual emission

cap (million ton

CO2-equivalents)

2058 (6.1) 1859 (15) 2084a(no national

caps)

New sectors introduced Power stations ≥20MW

Oil re�neries
Cement
Glass
Ceramics
Iron and steel
Bricks
Coke ovens

Wood processing

Aviation
(Fossil fuel combustion
power stations

Wood processing)

Aluminium
Petrochemicals
Nitric acid

Non-ferrous metals

Default allocation method Grandfathering Grandfathering Auctioning

Maximum allowed

auctioning share

5% (0%(Klimakvoteloven,

2004))

10% (No limit) No limit

Actual auctioning share 1% (0%) 3% (49%) Over 40%a

Allocation authority Each member state Each member state Harmonized EU-wide

rules

Allocation to new entrants Decided in NAPs. Option

of setting aside a reserve

for gratuitous allocation or

auctioning and making

�rms purchase them in

market (Gratuitous

allocation from reserve)

Same as in phase II

(Reserve only for

highly e�cient heat

and power plants)

5% of permits set

aside to new entrants

based on �rst come

�rst serve-principle

Allocation to �rms that

close down

None None None

Kyoto �exible mechanisms

allowed

CDM CDM

JI

CDM

JI

Quantitative restriction on

use of �exible mechanisms

Restrictions set in NAPs Restrictions set in

NAPs ranging from

0-22% of total

commitment (20%)

Whichever is highest
of
1: The amount
allowed in phase II,

2: A percentage

higher than 11% of

allocation in phase II

Actual use of �exible

mechanisms

Limited due to surplus of

permits(UNFCCC, 2007)

11% (13% (EEA,

2014))

N/A

a2013
bNorway in parentheses

* Other sources: EEA (2007); European Commission (2015, 2009); Norwegian Ministry of the

Environment (2008a); Ellerman et al. (2014)
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3 Economic theory

In this section we will review economic theory relevant to emission trading
systems. First we will compare the main types of environmental regulation.
Second we will discuss environmental regulation in a unilateral setting. Third
we will look at the main types of allocation methods and �nally we will set up
a simple micro-economic model of a pro�t-maximizing �rm that is subject to
di�erent types of allocation methods.

3.1 Environmental regulation and cost-e�ectiveness

3.1.1 Command and control instruments

In dealing with pollution, regulators have traditionally used �command and
control� (CAC) policies, i.e. imposing a technology standard or distributing
non-tradable emission permits that polluters must comply with in order to
avoid negative sanctions (Perman et al., 2011). Only if the regulator knows
the marginal abatement cost (MAC) of all �rms, can they allocate permits in
a way that make MACs equal across all �rms. However, there exists an asym-
metry of information and incentives between the polluters and the regulator.
Firms are assumed to have complete information on the most cost-e�ective way
of reducing their emissions, but will not have incentives to make use of this
because it may increase costs. In addition, �rms are not interested in providing
the government with accurate information because this might make regulations
stricter. The government has incentives to make the �rms abate at the cost-
e�ective level, but lack the information to make this a reality. It is therefore
unlikely that a CAC approach will yield a cost-e�ective outcome.

3.1.2 Market-based instruments

The second category of instruments are market-based. They are designed to
give �rms economic incentives to equalize MACs and in this manner produce
the cost-e�ective outcome. Within the topic of GHG emission abatement, the
most relevant instruments are emission permits and emission taxes. The former
can be illustrated in a simple scenario with two emitters (see Figure 2). Firm I's
MAC curve is shown from left to right and Firm II's from right to left. In the
scenario depicted, Firm II has a steeper MAC curve than Firm I. The regulator
has decided to cap emissions at 30 units. If a regulator issues 15 non-tradeable
emission permits to each �rm, the MAC of Firm I (E in the �gure) will be
lower than that of Firm II (G) and abatement is thus not done cost-e�ectively.
The trading of licenses will lead to a pareto improvement amongst the emitters,
while achieving the same environmental goal. Firm I will be interested in selling
licenses as long as the price is higher than the MAC and vice versa. With
trading, the equilibrium outcome is where the MAC curves intersect and gives
a permit price of F. Area D is what is gained by abating where it is cheapest.
With such a system it is possible to separate who abates and who pays for the
abatement, ensuring that cost-e�ectiveness is upheld.

8



Figure 2: Marginal abatement costs in an emissions trading system

*Figure inspired by Tietenberg (2006).

Given certain conditions, the same equilibrium can be achieved with an emis-
sion tax if the tax is set at F per unit emitted8. However, it has been shown
that the instruments yield di�erent results under uncertainty about abatement
cost (Weitzman, 1974). When the MAC curve is steeper than the marginal ben-
e�t (MB) curve, a tax will yield an outcome closer to optimum, while emissions
trading yields an outcome closer to the optimum the MB curve is steeper than
the MAC curve. Pizer (2002) applied this insight to the case of GHG abate-
ment and found that taxes are much more e�cient than permits. Despite this,
a global emission tax seems less politically viable than a global ETS .

3.2 Unilateral climate policy

There has never been a global, legally binding, system in place to handle climate
change. The Kyoto Protocol was the largest global e�ort yet, but failed at
including the two largest emitters, The US and China. At the conference of
the parties (COP) to UNFCCC in 2013 parties were invited to make �intended

8Taxes and emissions trading yield the same outcome if the environmental externality is
the only market distortion and there is no uncertainty (Aldy et al., 2010).
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nationally determined contributions� that are not legally binding (UNFCCC,
2013). The hope is that the contributions will be large enough so as to serve
as a basis for, and facilitate, negotiations for a new agreement at the COP in
Paris 2015. This means that at present, abatement e�orts are fragmented and
voluntary. How does the e�ect of an environmental policy change when it is
done unilaterally or regionally?

Firms in a country with a price on carbon is a at a competitive disadvantage
to �rms in a country without similar regulation. In this situation the regulated
�rm will lose market shares to the non-regulated �rm and production will shift
from the regulated country to the non-regulated country. Further, if the �rm is
energy-intensive in production it might shift parts, or the whole, of its produc-
tion to a country without regulation. This is called carbon leakage. In addition
to having an e�ect through a production shift, carbon leakage also works through
international energy markets: Firms that face a carbon price will have a lower
demand for fossil fuels, which causes fossil fuel prices to decrease. This price
decrease will lead to an increase in the demand of non-regulated �rms. Accord-
ingly, carbon leakage reduces the climate bene�ts of a carbon price: Parts of
the abatement e�ort of regulated �rms are negated by the emission increases of
non-regulated �rms.

Boehringer et al. (2010) examined carbon leakage rates under di�erent poli-
cies. They found that an ETS in Europe with full auctioning that reduces
emissions by 20% is estimated to lead to a leakage rate9 of around 0,28 or 28%.
They further found that a major share of leakage occurs via global energy mar-
kets. Concerns about loss of competitiveness has been important to the new
allocation rules of the EU ETS and is the main reason why some permits are still
allocated gratuitously (European Commission, 2010). A sector or sub-sector is
deemed to be at signi�cant risk of carbon leakage if one of the three conditions
are satis�ed: 1) Production costs are increased by at least 30% as a result of
the ETS, 2) the intensity of trade10 with non-ETS countries is above 30% or 3)
costs are increased by at least 5% and the intensity of trade is above 10%. The
list of sectors and sub-sectors deemed at signi�cant risk of carbon leakage is ex-
tensive, of which Table 2 is illustrative. It shows the distribution of Norwegian
�rms that are currently part of the EU ETS, according to their carbon leakage
status. A majority of �rms are at risk of carbon leakage.

3.3 Allocation methods

As mentioned in the introduction, Montgomery (1972) found that full auctioning
and full grandfathering yield the same cost-e�ective emission reduction. This is
in accordance with the Coase Theorem which states that the e�cient outcome
will be reached regardless of the initial allocation of property right, as long as
property rights are clearly established11. Concerns other than cost-e�ectiveness

9De�ned as the change in emissions amongst non-regulated �rms over change in emissions
amongst regulated �rms,

10De�ned as Total value of exports to third countries + total value of imports from third countries
Total market size for the community

11It is also assumed full information, perfect competition and low transaction costs
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Table 2: Carbon leakage risk in Norwegian EU ETS �rms in phase III
Carbon leakage status Percent

Signi�cant risk 78.8
Not at risk 15.3
Partly at riska 5.9

aA sub-installation is categorized as exposed to carbon leakage

* Derived from the Norwegian Environment Agency decisions on allocation to �rms

are also important to choice of allocation method. Below we will present the
most relevant allocation methods, along with justi�cations and problems with
their usage.

3.3.1 Auctioning

In economic literature, auctioning is typically considered the preferred alloca-
tion method. Firstly, the cost-e�ective equilibrium we found in Figure 2 is
achieved when all permits are auctioned. Second, auctioning ensures that the
'polluter pays principle' is met. In this respect it is similar to an emission tax.
In addition to the ethical aspect of the 'polluter pays principle', there is an
economic one: Both taxes and auctioning generate revenue that an be used to
reduce distortionary taxes elsewhere in the economy. Consequently, not only
is economic welfare improved by the internalization of the emission externality,
but also by the removal of the deadweight loss from the reduction of a tax in
another part of the economy (Perman et al., 2011). This is called the double
dividend hypothesis12. Member countries of the EU ETS must use half of the
revenue raised from auctioning in supporting innovation within renewable en-
ergy and supporting projects for carbon capture and storage. Thirdly, when a
�rm is able to pass through some, or all, of the cost of gratuitously allocated
permits onto the consumer, they pro�t from being part of the ETS. This is
called windfall pro�ts. The power sector in the EU ETS was estimated to be
able to pass through between 60-100% of their CO2 cost and is the reason why
they no longer receive any gratuitous allocation (Sijm et al., 2006).

3.3.2 Grandfathering

Grandfathering is the allocation of permits based on historical emissions or pro-
duction from a period before the start of an ETS. While it may seem counter-
intuitive that grandfathering will lead to the same emission outcome as auction-
ing, one must keep in mind that as long as the permit price is positive, permits
carry an opportunity cost. If a �rm uses a grandfathered permit to �pay� for
an emission, it loses the option to sell it on the market and will take this into
account when setting its optimal abatement level. Because the presence of a

12If it holds, the e�ciency gain is the revenue raised times the marginal excess burden of
taxation (Aldy et al., 2010).
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carbon price raises the opportunity cost of emitting, the grandfathering of per-
mits becomes an implicit subsidy to �rms. It is lump sum because it doesn't
a�ect �rm's incentives.

At the onset of the EU ETS, the main argument for grandfathering was a
political one. Full auctioning would have faced �erce opposition in the a�ected
sectors and made it more di�cult to get the regulation passed. Since �rms made
the decision of entering the market in the absence of the regulation, it might
be considered unfair that they should carry the whole cost of the regulation. It
has been argued that gratuitous allocation may dampen the structural changes
in the a�ected sectors, compared with full auctioning (NOU:2000:1, 2000).

A problem with grandfathering is that changing market conditions are not
taken into account: Firms that exit the market will still receive permits, �rms
that enter will not receive permits and allocation remains constant despite
changing �rm size. New �rms have no emission history upon which alloca-
tion can be based and must purchase all their permits while existing �rms will
receive permits as long as the ETS is in operation. This may be politically
unattractive and can be dealt with by granting new entrants gratuitous allo-
cation and discontinuing allocation to �rms that exit. However, this implies
that allocation is no longer lump sum, which as mentioned may a�ect the cost-
e�ectiveness of the system. The same is the case when allocation is updated to
take into account large changes in �rm size. In this respect, the grandfathering
that has been done in the EU ETS has not been purely lump-sum.

3.3.3 Output-based allocation

This is allocation given as a proportion of production. We have mentioned
that gratuitous allocation can be thought of as a subsidy. However, as op-
posed to grandfathering, OBA will a�ect production decisions (Rosendahl &
Storrosten, 2011). Firms will perceive OBA as a subsidy on production (that
reduces marginal costs) and hence increase production. A production level that
deviates from the cost-e�ective outcome that the costs of achieving the emission
goal is no longer minimized. This result suggests that OBA is not a favorable
option in a system where all emitters are part of an ETS. However, in an open
system with the presence of carbon leakage it might be a second-best strat-
egy. Boehringer et al. (2010) argues that OBA will level the playing �eld with
non-regulated �rms: Since there is an emission price, producers will have in-
centives to reduce emissions. At the same, the implicit subsidy will discourage
�rms from decreasing production. Under these circumstances it is expected that
�rm's emission intensity will decrease.

Going into phase III of the EU ETS, the main argument for continued gratu-
itous allocation was carbon leakage. An alternative way of dealing with carbon
leakage is border measures, such as a carbon tari�. However, this is politi-
cally contentious internationally and may be in violation of international trade
agreements.
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Figure 3: Pro�t maximizing production level

3.4 Theoretical model

It is apparent from section 2.2 that the allocation rules in the EU ETS does not
�t perfectly into any one of the allocation methods discussed above. Nonetheless,
understanding how actors behave under the di�erent methods in their pure form
is of importance when analyzing the e�ect of the allocation reforms. In this
subsection we will �rst go through the basics of pro�t maximization and second
present two simple theoretical models on the behavior of a pro�t maximizing
�rm, �rst under grandfathering and then under OBA.

3.4.1 Pro�t maximization

In economic analysis, a common assumption is that �rms behave in a manner
that will maximize their pro�ts (Varian, 1992). Pro�t is de�ned as the di�er-
ence between total revenue and total cost, both of which depend partly on the
behavior of the �rms. A basic result in economics is that you should increase
production as long as producing one more unit adds more revenue than it adds
costs. Pro�t is maximized when the marginal cost of production (MC) equals
marginal revenue of production (MR). This is illustrated in Figure 3. It shows
the pro�t maximizing production level in the short run under perfect compe-
tition. Under perfect competition, it is assumed that 1) the market price is
outside the control of each �rm, 2) that �rms sell a standardized product, 3)
that �rms can enter and exit a market freely and 4) that �rms have perfect
information about opportunities that exist in other markets (Frank, 2010, p.
337). The market price is represented by the line P and is horizontal because
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it is independent of the actions of the �rm. The price, of course, is what the
�rm receives for producing one more unit and it therefore represents marginal
revenues (P=MR). A �rm's pro�t is maximized at production level q* where
the MC curve crosses the MR curve from below. We see that for production
levels beyond q*, MC is higher than MR and pro�t would increase by cutting
production. The opposite is the case with production levels below q*. For each
unit produced below this level, the marginal revenue is larger than the marginal
cost and it would therefore make economic sense to increase production. The
average total cost (ATC) is the sum of average variable costs (AVC) and average
�xed costs. AVC are the costs that vary with production level in the short run.
In the �gure, the market price is higher than ATC and results in an economic
pro�t for the �rm in the short run. However, because we assumed perfect com-
petition, the economic pro�t will be eaten up in the long run by new entries
that force the price down. As long as the market price is equal to or larger
than the AVC, a �rm would still continue production in the short run even if
the market price is below ATC: Since it can recover its variable cost it might as
well continue production. In the long run the �rm would exit the market unless
the exit of other, less cost-e�ective, �rms drives the market price up to or above
ATC.

3.4.2 Pro�t maximization in an emission trading system with grand-
fathering

We will now present a theoretical model that is based on the model in Rosendahl
& Storrosten (2011).We will look at pro�t maximizing �rms in a competitive
market and see how they behave when an ETS is introduced. In this subsection
we look at an ETS with grandfathering of permits. Firms maximize the following
pro�t function:

πi ≡ max
qi,ei

[
pqi − ci

(
qi, ei

)
− σ

(
ei − γeipast

)]
(1)

The �rms are denoted i and there are i ∈ N = {1, 2, ..., n} �rms. All �rms
produce the same good q and face the market price p. Revenue is de�ned
as the product of quantity produced and price, and is the �rst term on the
right side of (1). The second term is the cost function, ci(qi, ei). Firms have
identical production technology and therefore the same cost function. As we
can see, it is a function of quantity, qi, and ei, which is a �rm's emission level.
Every unit of production cause emissions, and �rms can choose how �cleanly�
they want to produce the good. Cleaner production - or higher abatement -
increases production costs. Furthermore, the �rms operate within an ETS and
face a permit price, σ. The last term on the right hand side of (1) can be
interpreted as the cost to the �rm of being part of the ETS. The size of the
cost is equal to the permit price multiplied with emissions less the gratuitously
allocated permits. Permits are allocated based on a proportion of emissions in
a year before start of the ETS, eipast. γ is an allocation factor that determines
how large a proportion of past emission will be allocated gratuitously. When
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Figure 4: Pro�t maximization in an emission trading system

γ is 0, �rm receive no permits gratuitously and we have the equivalent of full
auctioning. When γ is larger than 0, �rms receive permits as a proportion
of emissions in a year before the start of the ETS. How does the ETS a�ect
�rm behavior? Since every unit produced leads to higher emissions and since
emissions must be paid for in the ETS, the marginal cost of production increases
in most cases. When the marginal cost increases, �rms will want to produce
less. This is illustrated in Figure 4. The only di�erence from �gure 3 is that
marginal costs are assumed linear in output and that average total- and average
variable costs are not shown. It is for simplicity assumed that the introduction
of the ETS has no e�ect on the market price in the �gure. The increase in
the marginal cost is represented by the upward shift of the marginal cost curve
fromMC0 to MC1. We can see that the increased marginal costs lowers quantity
produced from q0 to q1. How should a �rm set levels of production and emission
to maximize pro�t? As we will see, �rms set their levels independently of the
amount of grandfathered permits they receive: Past emissions, eipast, is outside
of the control of the �rm and una�ected by the choice variables qi and ei.

The �rst order condition with respect to quantity, qi is:

∂πi

∂qi
= p− ci1

(
qi, ei

)
= 0 (2)

This can be written as:
p = ci1

(
qi, ei

)
(3)

The notation ci1() means the derivative of the cost function with respect to the
�rst argument in the parenthesis. The term on the right hand side, then, is the
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cost function derivated with respect to quantity and represents the marginal
cost of production. Equation (3) shows that in order to maximize pro�t, a
�rm should choose the production level where the marginal cost of production
equals the market price. This echoes what we found in the previous subsection.
The pro�t maximizing production level in an ETS is represented by q1 in the
�gure above. From Equation (3) we see that the marginal cost of production
may also be a�ected by the emission level ei. The size of the e�ect depends
on the production technology that �rms use. Further, we see that the marginal
cost of production is una�ected by the grandfathered permits eipast. While
grandfathering has no e�ect on �rms' marginal cost and output level, it does
reduce �rms' �xed cost thus making the ETS less costly to the �rms.

The �rst order condition with respect to emissions is:

∂πi

∂ei
= −ci2

(
qi, ei

)
− σ = 0 (4)

By rewriting we get:
σ = −ci2

(
qi, ei

)
(5)

The term on the right hand side in Equation (5) represents the marginal cost of
emission reduction (MCER). This can be thought of as the cost at the margin of
maintaining a speci�c emission level. Maintaining a low emission level is more
costly at the margin than maintaining a high emission level. The marginal cost
of emission reduction must be equal to the permit price in order for pro�t to
be maximized. This makes intuitive sense: If the marginal cost of emission
reduction is higher than the permit price, it is in the �rm's interest to increase
emissions and instead purchase permits and vice versa. Equation (5) also reveals
that the grandfathered permits, eipast, has no e�ect on the optimal level of
emission. The optimal emission level is shown as e* in Figure 5 where the
MCER- and σ-curves intersect. Emissions are measured from left to right, and
a move from right to left therefore represent emission reduction.
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Figure 5: Optimal emission level in an emission trading system

We have now seen that grandfathering and full auctioning give rise to the
same output- and emission levels.

3.4.3 Pro�t maximization in an emission trading system with output-
based allocation

We will now look at �rm behavior under OBA. Firms maximize the following
pro�t function:

πi ≡ max
qi,ei

[
pqi − ci

(
qi, ei

)
− σ

(
ei − γqi

)]
(6)

Instead of permits being allocated as a proportion of past emissions (γeipast),
they are now allocated as a proportion of current output, γqi. Since qi is one of
the choice variables, allocation will now a�ect �rms' behavior. The �rst order
condition with respect to quantity, qi is:

∂πi

∂qi
= p− ci1

(
qi, ei

)
+ γσ = 0 (7)

This can be rewritten as:
p+ γσ = ci1

(
qi, ei

)
(8)

In order to maximize pro�t, Equation (8) states that the MC should be equal
to p + γσ. This is shown in Figure 6. When the allocation factor is 0 the last
term of Equation 6 is reduced to −σ

(
ei
)
and we have the equivalent of full
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Figure 6: E�ect of OBA on output

auctioning. With full auctioning, Equation 8 shows that �rm i should produce
at the output level where the marginal cost equals the market price of the good.
This is equivalent to the result in the previous sub-section. In contrast, when
the allocation factor is larger than 0, the marginal revenue increases to p+ γσ.
As we recall, OBA works as an implicit subsidy to production. The higher
marginal revenue will cause �rm i to increase its production level to q1 Figure
6.

The �rst order condition with respect to emissions is:

∂πi

∂ei
= −ci2

(
qi, ei

)
− σ = 0 (9)

By rewriting we get:
σ = −ci2

(
qi, ei

)
(10)

Figure 7 illustrates this relationship. Under full auctioning(or grandfather-
ing), the marginal cost of emission reduction is represented by the curve MCER0

and the permit price by the curve σ0. Since each �rm has the same production
technology they will have the same optimal emission level e*. What happens
when an allocation factor is introduced? We have seen that the implicit subsidy
in OBA increases the optimal production level. It follows that as production lev-
els increase, the costs of maintaining a speci�c emission level will increase. This
is represented by the clockwise rotation of the MCER curve toMCER1 (γ > 0)
Since the emission cap is set and since we have assumed identical �rms, each
�rm will still maintain emission level e*. The increased production levels re-
sult in a higher demand for permits and thus an increase in the permit price.
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Figure 7: E�ect of OBA on emissions

This is illustrated by the upwards shift of the horizontal permit price curve to
σ1 (γ > 0). It is also worth noting that when σ = 0, γ has no e�ect.

In this model we have seen that the introduction of OBA has a positive
e�ect on production but no e�ect on emissions, thus decreasing emission inten-
sity. Moreover, since the emission cap is �xed and output increases, the permit
price will increase due to higher demand of permits. Even if we drop the as-
sumption that �rms have identical cost functions, the average emission intensity
will decrease due to the unchanged total emissions. In the next section we will
investigate the e�ect of OBA on Norwegian �rms' emission intensity, but �rst
we will review some relevant literature.

3.5 Literature review

It is of interest to the study of allocation methods whether or not the Coase
Theorem holds in the context of emissions trading. After all, if it does not hold,
auctioning and grandfathering will yield di�erent emission outcomes. Reguant &
Ellerman (2008) investigate whether the initial amount of grandfathered permits
to �rms in Spain during the �rst phase of the EU ETS in�uence operational
decisions. Their �ndings suggests that there is not a strong relationship between
initial allocation and production decisions. Fowlie & Perlo� (2013) do a similar
study using data from the Californian NOx and SOx ETS. They test whether
exogenous variation in permit allocation a�ects facility-level emissions. They
are not able to reject the hypothesis that emissions are independent of how
emission permits were allocated across �rms. Both studies suggest that the
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initial allocation of permits does not a�ect the decisions of �rms.
Several theoretical papers have been written on the allocation of permits.

Böhringer & Lange (2005) show that non-lump-sum gratuitous allocation can
be cost-e�ective. They model a closed system where permits are allocated to
all �rms based on a proportion of emissions in a base year that is updated
continually13. The intuition is that each �rm will take into consideration the
expected bene�t of future allocations - in addition to their marginal abatement
costs - when determining what to bid on a permit. When �rms have the same
expected bene�t of future allocation, the marginal abatement costs will be equal
across �rms. Rosendahl & Storrosten (2011) look at the e�ect of OBA on �rms'
incentives to invest in clean technologies. With their analytical framework, upon
which section 3.4.3 was based, they show that OBA will lead to an increase in
�rm output which leads to an increase in the permit price. This, in turn, leads to
higher incentives to invest in clean technologies as long as �rms do not expect the
regulator to make stricter allocation rules as a result of the cleaner technology.

Perhaps the most famous paper on the impact of the EU ETS is the prelimi-
nary study done by Ellerman & Buchner (2008). They investigated whether the
surplus of permits was due to abatement or over-allocation. Though they found
that over-allocation had occurred, they estimated that ETS �rms' emissions had
decreased by 2-5% due to the ETS. Egenhofer et al. (2011) did a similar study
which included the years up to 2009 and estimated a stronger negative e�ect on
emissions in the years 2008-2009 due to the ETS compared to the e�ect in the
�rst phase. An example of more recent studies is the working paper by Petrick &
Ulrich (2014), where German manufacturing �rms were investigated. By using a
di�erence-in-di�erence matching estimator they found that the EU ETS caused
treated �rms to abate one-�fth of their CO2 emissions relative to non-treated
�rms. Wagner et al. (2014) did a similar study on French manufacturing plants
and their �ndings suggest that emissions were reduced by an average of 15-20%
because of the ETS. Moreover, they found that the most marked reduction was
done in phase II. Jacobsen (2014) wrote a master thesis on the impact of the EU
ETS on Norwegian �rms' pro�tability and CO2 emissions. Her results, though
not statistically signi�cant, suggested that the aggregate e�ect on pro�tability
was positive. Further, she found that emission most likely has had a negative
e�ect on total emissions and emission intensity, but that the size of the e�ect is
uncertain.

Sartor et al. (2014) made an early assessment on how benchmark-based
allocation a�ects energy-intensive sectors. They found that the new rules lead
to a signi�cant fall in free allocation and that most of the redistribution of
permits happened within sectors and member states, suggesting that di�erences
between countries were smaller than expected.

13This conclusion relies the assumptions that �rms have the same expectation of future
permit prices and that the proportion of historic emissions that is allocated is equal for all
�rms.
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4 Data and research design

Now that we have reviewed the background and the most relevant theory, we
will move on to the empirical analysis. We will �rst introduce the data set and
the variables that will be used, before presenting the methodology.

4.1 Data construction

The data sample used in the analysis combines panel data on emission level,
economic performance, energy prices, permit allocation and permit price. Data
on industry economic performance, energy prices and sector a�nity are obtained
from Statistics Norway, while emission data is obtained from the Norwegian
Environment Agency. Allocation data at installation level is obtained from the
European Union Transaction Log. The EU ETS targets CO2-eq emissions at the
installation level and it would therefore be natural to perform the estimation on
installations. However, most of the necessary data are available only at the �rm
level. In order to construct the data set, installation level data on allocation had
to be collapsed to �rm level using �rm organization number. Finally, this was
matched with �rm level emission data, economic performance data and energy
price data using �rm organization number.

We were interested in including as many as possible of the land-based emit-
ters of GHG that are part in the emission data from the Norwegian Environment
Agency, but we were not able to match all the �rms with the other data sets.
The matching left us with a total 338 �rms that have emissions in at least one
of the years covered. Firms were divided into six sectors based on the �rst two
digits of their NACE codes. The industrial composition can be seen in Figure
8. In total, the data set contains 81 �rms which have been part of the EU
ETS at some point in time and 257 �rms that have never been part of the EU
ETS. With the exception of the sector dubbed Other industry, all sectors in-
clude �rms inside and outside the EU ETS. The details can be seen in Table
3. The data set covers the 13 years between and including 2001 and 2013. All
�rms are not observed in all years, which makes the data set unbalanced. This
is not a problem if observations are missing for some random reason rather than
some systematic reason. If there is a systematic reason for the missing observa-
tions the estimators will not be consistent (Wooldridge, 2010, p. 283). Historic
and current emission data do not exist for all ETS-regulated �rms. Some ob-
servations are missing because �rms have been slow at reporting emissions, a
few �rms have not reported emissions because they are not regulated under the
pollution act, while others have not been required to report 14. This only con-
cerns 7 district heating �rms, so there is no reason to believe that a majority
of missing observations are missing for reasons other than entry or exit into the
market.

14From e-mail correspondence with the Norwegian Environment Agency spring 2015
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Figure 8: Industrial composition

Table 3: Industrial composition
Industry Two-digit NACE code ETS Non-ETS Total
Wood processing 16,17 17 13 30
Power production 35-39 8 15 23
Food and textiles 10-15 10 105 115
Metals and Minerals 23-25 34 46 80
Chemicals 20-22 12 32 44
Other industry 5,7-9, 18, 26-33 0 46 46
Total 81 257 338

22



4.2 Variables

The variables that will be used in the econometric model are presented in Table
4. The predicted coe�cient signs is also shown and will be discussed individ-
ually below. All variables denoted in Norwegian kroner are de�ated using the
producer price index.

Emission intensity Emission intensity is our dependent variable. It is usu-
ally de�ned as the ratio of a �rm's emission to its output, but output can be
hard to de�ne: Within sectors that produce homogeneous goods such as the
aluminium or cement sector, it is possible to compare emission intensity using
tons produced, but comparing the output of �rms is not straightforward in a
market with heterogeneous goods. It may not be possible to directly compare
output between sectors and it has therefore been necessary to use a proxy vari-
able. In this thesis we will use the number of employees as a proxy for output.
Emission intensity in this thesis is de�ned as follows:

Emission intensity =
Emissions
Employees

Production value and electricity use were also considered as proxies for output.
Production value is a common measure of output (The Norwegian Environ-
ment Agency & Statistics Norway, 2013). Production value is the �amount
actually produced by the [�rm], based on sales, changes in inventories and the
resale of goods and services� and is measured in units of 1000 Norwegian kro-
ner (Flø ttum, 1997). A concern when using production value as a proxy is
that emission intensity will be a�ected by the price of the good being produced:
Looking at the de�nition above, we see that an increase in the price of the good
will lead to a drop in emission intensity, and vice versa, even though emission
level and actual output level is unchanged.

With electricity use as proxy, we would be looking at how much emission
is generated by each unit of electricity. An advantage to using electricity use
is that is not a�ected by changes in the price of the good being produced.
A disadvantage is that a change in a �rm's energy composition will make it
appear as if output has changed even when it has not. For instance, lets say a
�rm increases its use of electricity at the expense of coal because of a carbon
price, but keeps its output unchanged. Then the e�ect on emission intensity
will be counted twice: First in the numerator through the reduced emissions
from using less coal, and second in the denominator from the increased use of
electricity.

By using employees as a proxy we can circumvent these two problems. How-
ever, since labor is an input to production, a change in the input mix may
register as change in output even though it is unchanged. This is a general
problem with the use of proxies: Because a proxy seldom has complete correla-
tion with the variable of interest, e�ects may be over- or underestimated.

For robustness, we will perform the analysis on all alternatives.
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Table 4: List of variables
Variable Description Expected e�ect on

emission intensity
Emission intensity Emission / employees Dependent variable
Relative energy prices Energy price fossil / energy price

�clean�
-

Employees Number of employees -
ETS Dummy for EU ETS participation +
Phase 1 Dummy for the years 2005-2007 -/+
Phase 2 Dummy for the years 2008-2012 -/+
Phase 3 Dummy for the year 2013 -/+
ETS*Phase 1 Dummy for �rms that are part of

ETS in phase I
-

ETS*Phase 2 Dummy for �rms that are part of
ETS in phase II

-

ETS*Phase 3 Dummy for �rms that are part of
ETS in phase III

-

Wood processing Dummy for wood processing sector -/+
Power production Dummy for power production sector -/+
Food and Textile Dummy for food and textile sector -/+
Metals and Minerals Dummy for metal and mineral sector -/+
Chemicals Dummy for chemical sector -/+
Other industry Dummy for other industry -/+

EU ETS dummy
The dummy variable called ETS is equal to 1 for �rms that are part of the EU

ETS, even for years before the start of the ETS. Since the EU ETS is targeted
on �rms that are GHG emission-intensive in production, the expected coe�cient
sign of the ETS dummy is positive. This de�nition of the ETS dummy allows us
to interact it with time dummies to pick up di�erences over time periods between
ETS and non-ETS �rms. The interaction terms will be described below.

Phase dummies
Time dummies for the phases are included to capture di�erences in emission

intensity that might be due to systematic di�erences between the phases. These
are phase-speci�c e�ects that a�ect both �rms inside and outside the ETS. We
avoid the dummy variable trap by not including a dummy for the period before
the start of the EU ETS.

ETS-phase interaction terms
In addition to the ETS dummy, we include interaction terms between ETS

and the phase dummies. The terms are equal to 1 when the dummy for ETS
is equal to 1 and the respective phase dummies are equal to 1. The reason
for including these interaction terms is that they allow us to examine how the
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emission intensity of ETS �rms di�er from non-ETS �rms in the di�erent phases.
This method is called the di�erence-in-di�erence method, which we will get back
in the section on methodology.

The introduction of the EU ETS meant that beginning in 2005, ETS �rms
face a higher price on �dirty� inputs to production than non-ETS �rms do. As
we found in the theory section, this will likely give ETS-�rms stronger incentives
than non-ETS �rms to make e�orts at emission reduction. We therefore expect
the coe�cient signs of all the interaction terms to be negative. However, the size
of the di�erent e�ects are hard to predict. The economic downturn following
the �nancial crisis in 2007, combined with possible EU-wide over-allocation of
permits, have contributed to keeping permit prices lower than expected through
much of EU ETS' duration. In the theory section we saw that the optimal level
of emissions depends the permit price. Consequently, the low prices may have
slowed down emission reduction e�orts.

We are mostly concerned with the third phase. Due to the implicit subsidy
on production in the third phase, we expect a stronger e�ect in this phase
compared to the preceding phases., However, the average permit price has so
far been lower in phase III than the other phases. In addition, we only have
observations from one year after the allocation reform, so the �rms may not
have had time to adapt.

Relative energy prices, dirty/clean
This variable is the ratio of the average price of energy from sources that

cause GHG emissions to sources that do not:

Relative energy price =
Average energy price (dirty)
Average energy price (clean)

�Dirty� energy encompasses energy from fossil sources: Petroleum products, gas,
coal and coke. �Clean� energy is comprised of purchased electricity, heat and
bio fuel. Though not technically GHG emission-neutral, in our analysis they
are considered to be free of emissions since �rms do not face a carbon price
when using these forms of energy. The average energy price is the quotient of
purchased energy measured in 1000kr divided by purchased energy measured in
MWh:

Average energy price =
Purchased energy (1000kr)
Purchased energy (MWh)

An increase in the relative energy price, holding all else constant, will cause �rms
to substitute some dirty energy with the now relatively cheaper clean energy.
This will cause emissions to go down, thus decreasing emission intensity. The
opposite is the case when the relative energy price decreases, holding all else
constant.

It should be mentioned that in the short run, large changes in the input
mix may be unrealistic: The capability of existing �rm infrastructure to ac-
commodate di�erent types of fuels may be limited. It is also worth noting that
an increase in the price of petroleum products may increase emission intensity
because of substitution into coal, which is more emission intensive.
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Table 5: Summary of variables across phases
Variable Pre-ETS Phase I Phase II Phase IIIa

All ETS Non-ETS ETS Non-ETS ETS Non-ETS
A. Means

Emission intensity 0.059 0.169 0.008 0.166 0.007 0.171 0.008
(Ton co2-equivalents /

employees)

(0.185) (0.282) (0.027) (0.329) (0.059) (0.297) (0.024)

Emissions 35623 126938 2123 113957 2447 114399 2844
(Ton co2-equivalents) (138018) (245191) (8845) (194831) (8342) (176923) (8952)

Employees 160 211 126 180 120 181 130
(195) (198) (150) (173) (154) (160) (177)

Relative energy price 1.109 1.878 1.120 23.557 1.189 5.049 1.249
(Energy price fossil / energy

price �clean�)

(0.999) (12.6) (1.210) (30.546) (0.904) (31.808) (0.6827)

B. Totals
Emissions 45986215 9217830 22992120 23910406 25149362 8923081 617169
(Ton co2-equivalents)

Permit allocation - 9038056 - 23332244 - 8746980 -
(Ton co2-equivalents)

Emission/allocation ratio - 1.0199 - 1.0247 - 1.0201 -
aOnly 2013
*Standard deviations in parentheses

On the whole, when the relative energy price increases, following either an
increase in the average price of dirty energy or a decrease in the average price of
clean energy, we expect emission intensity to decrease. The expected coe�cient
sign is therefore negative.

Employees Larger �rms may be able to introduce clean technology more
cheaply than smaller �rms due to economies of scale. The number of employees
is included to control for the size of �rms. We expect that as the number of
employees increase, the emission intensity will decrease.

Sector dummies
Sector dummies are included to control for variation caused by inherent di�er-

ences that may exist between the sectors. In order to avoid the dummy-variable
trap, power sector dummy is excluded from the regression. It is di�cult to
predict the coe�cient signs of the sectors. The metals and mineral sector has
historically been, and still is, the most emission-intensive sector. However, this
sector has also by far had the highest drop in emission intensity in the past 20
years (The Norwegian Environment Agency & Statistics Norway, 2013).

Summary statistics of the relevant variables can be seen in Table 5.
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4.3 Research design

In this thesis we set out to estimate the e�ect of allocation reform on emission
intensity. An obvious challenge in estimating the impact of the reform is that
data is only available for the �rst year of phase three: It is possible that one
year is insu�cient time for a �rm to react. A second challenge is that the
number of Norwegian �rms in the EU ETS is low, making our sample relatively
small. The sample is by no means too small for statistical inference, but with
small samples come the increased likelihood of less precise estimates, i.e. higher
standard errors and lower statistical signi�cance.

A main challenge in assessing the impact of any policy is that we do not
know what the outcome would have been without it: A �rm is either regulated
or it is not. In order to arrive at any meaningful estimates on the reform's e�ect
we a need a comparable group of �rms that is not regulated. Factors other
than pollution regulation also in�uence emission intensity. Using econometric
methods, we will try to disentangle the e�ect the regulation has had on emission
intensity from other factors.

To start o� the analysis we will perform a di�erence-in-di�erence (DID)
estimation on our sample. An assumption necessary for e�cient estimates is
that there is no correlation between observation's error terms. Because we are
looking at the same �rms over time it is likely that the error term for a �rm is
correlated over time. We a will therefore use cluster-robust standard errors that
allow for correlation within �rms, but not between �rms. These standard errors
also allow for heteroskedasticity. Further, we will perform a DID estimation
on a sample created by propensity score matching (PSM) in order to address
selection on observables.

The relationship between the explanatory variables in our model and emis-
sion intensity is not necessarily linear. We will perform a Ramsey test on func-
tional form misspeci�cation to see whether there may be some nonlinearities
that our model does not account for. Should this be the case, our estimates
may be biased and inconsistent (Wooldridge, 2009, p. 301).

4.3.1 Propensity score matching

Comparing EU ETS �rms with non-EU ETS �rms may be problematic. Char-
acteristics inherent to a �rm may make it more or less likely to be regulated
under the EU ETS. Since the main goal is curbing CO2 emissions, we for in-
stance expect participating enterprises to have higher CO2-emissions than non-
participant. Thus, treatment is not randomly assigned. The criteria for re-
ceiving treatment are installed capacity (MW), sector a�nity and size. The
problem arises when these inherent characteristics also a�ect the outcome vari-
able of interest, making estimates biased (Khandker et al., 2009, p. 53). This is
a form of selection bias. In an e�ort to deal with selection bias due to observable
characteristics we will use propensity score matching.

The purpose of matching in this thesis is to construct a counterfactual that
more closely resembles the treatment group, allowing us to �compare apples with
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apples�. This is done by matching treated �rms with untreated �rms that are
as similar as possible in terms of some observable characteristics. With PSM,
we �rst estimate the probability for participation in the EU ETS (the propen-
sity score) based on these observable characteristics. The advantage of using a
propensity score is that the multiple observable characteristics are reduced to
a single score upon which �rms can be matched, thus reducing the problem to
one dimension.

A critical assumption in PSM is the unconfoundedness assumption, which
states that no relevant unobserved characteristics exist that a�ect both treat-
ment status and the outcome variable. This implies that after controlling for the
observable characteristics, the assignment of treatment resembles randomness,
which means that the untreated units can be used as a counterfactual without
leading to biased estimates. We cannot categorically rule out the existence of
such unobserved characteristics, so this is the most serious limitation of match-
ing methods (Gertler et al., 2010, p. 114). For this reason we will combine
matching with a di�erence-in-di�erence estimator, which we will get back to in
the next sub-section.

A second assumption is the balancing assumption. Balance is a measure of
how similar treated and untreated units are on the observable variables. It is
assumed that observations with the same propensity score, ρ, have the same
distribution of observable characteristics, X, whether it is treated or not:

ρ(X|T = 0) = ρ(X|T = 1)

A third assumption is that of common support, which states that for each
value of X, there is a positive probability of being both treated and untreated.
That is, �rms with the same values of X are in both treatment and control
groups. By imposing an �area� of common support, we ensure that all included
�rms have a possibility of being matched with a �rm in the control group.

The criteria by which �rms are assigned treatment are installed capacity
(MW), sector a�nity and size and we will use variables that can approximate
these criteria to estimate the propensity score. Since we are interested in the
change in emission intensity of �rms, we include emission intensity from 2001,
the year furthest away from the onset of the ETS, as a matching variable.
Further, we match on total energy usage (MW) in 2001 to account for the
capacity criteria, number of employees in 2001 to account for size and two-
digit NACE codes to account for sector a�nity. The probability of program
participation is estimated using a probit model:

Pr(ETS = 1|X) = F (α+Xβ) ∈ [0, 1]

where

Xβ = β1emission intensity2001 + β2energy use2001 + β3employees2001 + β4sector

The function F is the cumulative normal distribution function, which is conve-
nient because it gives output between 0 and 1. Based on the predicted values
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Figure 9: Di�erence-in-di�erence

from the probit model, observations are matched using nearest neighbor match-
ing with replacement. With nearest neighbor matching, an individual from the
treatment group is matched with the individual from the comparison group that
is closest in terms of the propensity score (Ravallion, 2007, p. 3807). The match-
ing is done with replacement: We allow each individual in the control group to
be matched with up to ten individuals from the treatment group. While this
ensures that most treated �rms get a match, it may a�ect the quality of the
matches. Considering the small size of our sample, this also ensures that our
sample does not become too small after the matching.

We create a new sample consisting of only �rms that are matched, and apply
a di�erence-in-di�erences estimator to this sample.

4.3.2 Di�erence-in-di�erence

With DID we can compare outcome from before and after the treatment was
implemented, between treated and untreated. An important assumption when
applying a DID estimator is that absent treatment, emission intensity for both
treated and untreated �rms would follow the same pattern of change over time
and that it is the treatment that triggers a deviation from this pattern
(Khandker et al., 2009). This is illustrated in Figure (9), where we assume that
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emission intensity for ETS �rms decreased more than the emission intensity of
non-ETS �rms as a result of the ETS. The advantage of using DID is that it
takes care of unobserved heterogeneity between treated and untreated that is
constant over time. PSM alone does not account for such unobserved
characteristics that can explain participation and a�ect the outcome, and this
is why we combine it with DID. This is a common practice in impact
assessment and sometimes called Matched Di�erence-in-Di�erence(Khandker
et al., 2009; Ravallion, 2007, p. 3840). It should be noted that untreated does
not mean unregulated. Most of the non-ETS �rms are subject to
command-and-control regulation. We estimate the following log-log model

ln_emis_intit = α+ β1ln_rel_enpriceit + β2ln_emplit + δ4ETSi

(11)

+

3∑
j=1

γjPj +

3∑
j=1

δj(ETSi ∗ Pj) +
5∑

h=1

ϑhShi + εit

Where P represents the three phases, S represents the �ve sector dummy
variables and ETS*P represents the interaction terms. The subscript i indexes
individual �rms, t indexes time, j indexes phases and h indexes sectors.
δ1 − δ3 are coe�cients for the interaction terms. Let us look at the interaction
term for the third phase. Its estimated coe�cient, δ̂3, can be expressed as

δ̂3 = (lnemisintETS,3 − lnemisintETS,0)− (lnemisintC,3 − lnemisintC,0)

Where lnemisintETS,3 denotes the sample average emission intensity for ETS
�rms in phase 3 and lnemisintETS,0 the sample average for ETS �rms pre-
ETS. lnemisintC,3 and lnemisintC,0 denotes the sample average for the control
group in phase 3 and pre-ETS, respectively. What this interaction term allows
us to compare, then, is the time changes in the means between ETS and non-
ETS �rms, between pre-ETS years and the third phase. As such, the interaction
term does not directly identify the e�ect of the reform. We expect all interaction
terms to be negative, but that the coe�cient of the third phase interaction term
to be larger than those of the �rst and second phase in absolute terms because of
the implicit subsidy on production. Should this be the case, it can be evidence
that the reform has had a negative e�ect on emission intensity.

As a second approach and robustness check, we limit the sample to the
years after the introduction of the EU ETS. On this sample we perform a DID
estimation where we compare the change in means between ETS and non-ETS
�rms, between the �rst two phases and the third phase. A negative coe�cient
for the phase three interaction dummy will suggest that the ETS had a greater
e�ect on emission intensity in phase three than the previous phases and could be
attributed to the implicit subsidy on production. The following log-log model
is estimated as a second approach:
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ln_emis_intit = α+ β1ln_rel_enpriceit + β2ln_emplit + δ2ETSi +

(12)

γ1Phase3 + δ1(ETSi ∗ Phase3) +
5∑
j=1

ϑhShi + εit

5 Results and discussion

In this section, we present our results and perform several robustness checks.
Since we are using a log-log model, the β−coe�cients in Equations 11 and 12
can be interpreted as elasticities: A one percent increase in a control variable
leads to a percentage increase in Y equal to the control variable's estimated
coe�cient. With the dummy variables, the interpretation is di�erent as they
are not log-transformed. When a dummy is equal to 1, it has an e�ect on Y
equal to eδj , where j refers to the jth dummy variable in (11) and (12).

5.1 Model I

The results of the estimation can be seen in Table 6.
The ETS dummy has a coe�cient of 3.308 and is statistically signi�cant

at the 1 percent level. The interpretation is that, holding all else constant,
increasing the ETS dummy from 0 to 1 will lead to a 27-fold increase in emission
intensity15. The positive estimated coe�cient sign is, of course, expected and
the estimated coe�cient size is consistent with the means in Table 5A.

Of the interaction terms, we start by looking at ETS*Phase3 which is the
main variable of interest. Recall, this is our DID estimator. We see that the
coe�cient is positive, which runs contrary to our expectations. It is important to
note that the estimated coe�cient is not statistically signi�cant, i.e. we cannot
reject the hypothesis that it has no explanatory power on emission intensity in
the model. There may be several explanations for this. First, the permit price
was low throughout 2013, with an average of ¿4.5 euro. With such a low permit
price, the situation that ETS �rms faced was not greatly di�erent from that of
non-ETS �rms when it came to emissions. Prices may have been too low to be
emphasized when business decisions were made. Recall from Sub-section 3.4.3
that when the permit price was 0, the allocation factor has no e�ect. Perhaps
more equally important to the permit price in 2013 is the steadily declining price
in the second phase. What we are seeing may be the result of low incentives to
abate emissions in the latter part of the previous period.

Second, some adaptations cannot be done in short order and have a time
horizon longer than one year. From the theory section we anticipated that
emission intensity would decrease through an increase in output. The lack of
statistical signi�cance could stem from �rms not being able to react very much to

15e3.308=27.33
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the implicit subsidy in a one-year time frame. Third, it is possible that �rms that
were incorporated into the EU ETS in the third phase are inherently di�erent
than �rms that were incorporated sooner. Phase III saw the incorporation of
�rms with PFC gas emission from the production of aluminium and ferroalloys,
as well as N2O from nitric acid production. Fourth, it is possible that the number
of employees is an inappropriate proxy for output. Changes in employment could
for instance be more rigid than changes in output. As a robustness check on
the choice of proxy we will compare the results above with results from models
with the other proxy alternatives later in this section. All the interaction terms
- which are designed to compare the emission intensity between ETS and non-
ETS �rms between the three phases and the pre-ETS period - are statistically
insigni�cant. This means we cannot compare them in a meaningful way.

Moving on to the relative energy prices, we see that the estimated coe�-
cient is -0.315 and signi�cant at the 1 percent level. The coe�cient sign is as
expected. The interpretation is that when the relative energy price increases
by 1%, holding all else constant, emission intensity decreases by 0.315%. This
suggests that �rms are responsive to changes in the energy price. The coe�cient
for number of employees is negative as anticipated, at -0.366 and is signi�cant
at the 5 percent level. According to the model, then, when �rm size increases
by 1% holding all else constant, emission intensity drops by 0.366%, lending
weight to the hypothesis that the introduction of clean technology is subject to
economics of scale.

Of the sector dummy variables, the power sector was omitted due to col-
inearity. Only the metal and mineral sector and chemical sector dummies are
statistically signi�cant. The estimated coe�cients are positive, suggesting that
emission intensity in those sectors are higher than in the power sector. The phase
dummies are neither partially or jointly signi�cant (Appendix Table B.2).

When the DID estimation is performed on the original, unmatched sam-
ple, we see a statistically signi�cant negative coe�cient for ETS*Phase2 and
ETS*Phase3 (Appendix Table B.5) . The di�erence in estimates between the
unmatched and matched samples could be attributed to selection bias in the
original sample. Characteristics inherent to ETS �rms could mean that they
have a higher propensity to decrease their emission intensity than non-ETS
�rms. When this is not controlled for, it could appear as if the reform has had
an e�ect when in reality it has not.
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Table 6: Estimation results - DID-estimators for phases I-III. Sample from years
2001-2013

ETS 3.308***
(0.402)

ETS*Phase 1 0.196
(0.259)

ETS*Phase 2 -0.308
(0.378)

ETS*Phase 3 0.161
(0.510)

Relative Energy Prices (log) -0.315***
(0.053)

Employees (log) -0.366**
(0.216)

Industry - Wood processing 0.065
(0.981)

Industry - Food and Textile 1.179
(1.004)

Industry - Metals and minerals 1.977**
(0.970)

Industry - Chemicals 1.989**
(0.975)

Industry - Other industry -0.168
(0.201)

Phase 1 -0.353
(0.230)

Phase 2 0.051
(0.344)

Phase 3 -0.176
(0.478)

R2 0.5301
Constant 2.564*
N 1088

Robust standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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5.2 Model II

The results from our second approach can be seen in Table 7. In this model the
sample is limited to years after the EU ETS was introduced. The interaction
term ETS*Phase3 is statistically insigni�cant in this model. This statistically
insigni�cant DID estimate suggests that the emission intensity of ETS �rms has
not changed di�erently between the �rst phases and the third phase than of non-
ETS �rms. This could indicate that the introduction of output-based allocation
has not lead to decreased emission intensity. As mentioned, these �ndings may
be the result of permit prices being lower than anticipated for much of EU ETS'
duration. The low prices can be explained by possible EU-wide over-allocation
of permits and reduced economic activity following the �nancial crisis in 2007.
Further, data is limited to only one year after the introduction of output-based
allocation. It is likely that �rms need more time to fully adapt to the reform.
It should be noted that although we have data for only the �rst year of the
third phase, the amendment introducing output-based allocation was passed in
2009. It is therefore possible that �rms may have reacted, but that the e�ect
isn't captured in fully in ETS*Phase3 because adaptations may have started
in the second phase. The estimates for relative energy prices and employees
are statistically signi�cant and negative. Estimates for the metals and minerals
sector and chemical sector are statistically signi�cant and positive. This echoes
the results in the �rst model.

5.3 Post-estimation and robustness checks

After performing a Ramsey RESET test on functional form misspeci�cation we
cannot reject the hypothesis that there are no omitted non-linear variables in
the original lin-lin model (Table B.1 in appendix). This suggests there may be
some nonlinearities that our model does not account for. This prompted us to
try a model speci�cation with log-transformed dependent and control variables.
After a visual inspection of the lin-lin and log-log residuals, we observe that
the log-log residuals exhibit a higher degree of normal distribution. The reason
why this is important is that hypothesis testing requires the assumption of
normality to hold (E(u|x) = 0). Residual plots can be seen in appendix Figure
B.1. Further, when performing the Ramsey test on log-transformed dependent
and explanatory variables, the hypothesis that the model is correctly speci�ed
can no longer be rejected. For these reasons we chose to estimate a log-log
model.
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Table 7: Estimation results - DID-estimator for phase III. Sample from years
2005-2013

ETS 3.166***
(0.355)

ETS*Phase 3 0.270
(0.365)

Relative Energy Prices (log) -0.330***
(0.059)

Employees (log) -0.389**
(0.164)

Phase 3 -0.036
(0.328)

Industry - Wood processing -0.096
(0.919)

Industry - Food and Textile 0.899
(0.973)

Industry - Metals and minerals 1.982**
(0.905)

Industry - Chemicals 1.846**
(0.905)

Industry - Other industry -0.378***
(0.125)

Constant 2.852**

R2 0.5518

N 768
Robust standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01
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After doing the propensity score matching we are interested in whether the
underlying assumptions hold. The unconfoundedness assumption isn't directly
testable. However, since the selection process into the EU ETS is transparent
and we know the criteria for entry, we can argue with some con�dence that
all relevant variables are included. The balancing property, on the other hand,
is testable: We test to see whether the included variables are similar between
treated and untreated for the same ranges of the propensity score. Our initial
speci�cation is imbalanced across many variables (Table B.3 in appendix). After
testing various model speci�cations, we �nd that a model that excludes the
energy use variable exhibits a higher degree of balance. To check whether the
common support assumption holds, we do a visual inspection of the densities of
the propensity scores of the treated and control groups (Figure B.2 in appendix).
We �nd that the area of common support is limited in the model that includes
the energy use variable, but convincingly larger in the model without it. We
therefore estimamte the propensity score without the energy use variable.

An important assumption to the DID estimator was that absent treatment,
the emission intensity for treated and untreated would move in tandem over
time. While not directly testable, an indication of whether they move in tandem
is to compare emission intensity over time before the ETS. From Figure B.3 we
see that the movements are not in tandem, lending weight to the use of PSM to
construct a better control group.

As another robustness check we perform the estimation with the other alter-
natives for proxy for output, i.e. we are changing the denominator in the mea-
sure of emission intensity. Estimated coe�cients of the main control variables
can be seen in Table 8. Full regression output can be found in the appendix.
We see that the ETS dummy, relative energy prices and employees are strongly
statistically signi�cant in all model speci�cations. The results are largely the
same with all proxy alternatives, but di�er slightly with electricity use as proxy.
The only interaction term that is statistically signi�cant is ETS*Phase 2 when
electricity use is proxy for output. The coe�cient is negative. A possible expla-
nation is that permit prices were relatively high in the �rst part of the second
trading phase, giving incentives to produce with lower emission intensity.
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Table 8: Comparison of estimates from models with di�erent proxy for output
Variable Proxy Employees Electricity Use Production value
ETS 3.308*** 2.123*** 3.028***

(0.402) (0.329) (0.336)

ETS*Phase 1 0.196 0.030 0.176
(0.259) (0.288) (0.336)

ETS*Phase 2 -0.308 -0.729** -0.386
(0.378) (0.323) (0.316)

ETS*Phase 3 0.161 -0.589 -0.172
(0.510) (0.357) (0.380)

Relative Energy Prices (log) -0.315*** -0.272*** -0.339***
(0.053) (0.103) (0.059)

Employees (log) -0.366** -0.594*** -0.349***
(0.216) (0.138) (0.122)

R2 0.5301 0.3191 0.4872

Constant 2.564* 0.298 -4.642***
N 1088 1228 1198

Robust standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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6 Concluding remarks

In this thesis we set out to estimate the e�ect allocation reform. Speci�cally,
we were interested in the implicit subsidy on output created by output-based
allocation and the e�ect it has had on the emission intensity in the EU ETS at
the �rm level. We have used a sample of 338 Norwegian industry �rms from
2001 to 2013, 81 of which have been participating in the EU ETS at some
point. By matching �rms based on the criteria for participation in the ETS, we
are better able to compare changes in the emission intensity of �rms that are
part of the ETS and those who are not. We estimate the e�ect using a simple
di�erence-in-di�erence approach.

We �nd little evidence in support of our hypothesis that output-based alloca-
tion has a negative e�ect on emission intensity. A plausible explanation is that
the EU ETS in itself has had little e�ect on participants' emission intensity. In
fact, in the estimation of our �rst model we �nd no statistically signi�cant e�ect
of the EU ETS in any of the phases. This may be explained by permit prices
that have been lower than what was anticipated before the introduction of the
ETS. Firms may simply not have included the ETS in their decision making
process because prices have been too low to give su�cient incentives. When the
permit price is low, the implicit subsidy on production is low.

Finally, it needs to be mentioned that data was available only for the �rst
year of the third trading phase. Firms may not have had the time to adapt,
which may be a reason for the statistically insigni�cant results. As such, this
research is only preliminary. Further work several years into the third phase and
on other countries is required to better understand the e�ects of the allocation
reform.
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Appendices

A Figures

Figure A.1: Emission intensity over time
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B Post-estimation and robustness checks

Table B.1: Ramsey RESET tests
Lin-Lin Model

Ramsey RESET test using powers of the �tted values of emis_int
H0:model has no omitted variables

F(3, 3173) = 125.25
Prob > F 0.0000

Log-Log Model
Ramsey RESET test using powers of the �tted values of ln_emis_int

H0:model has no omitted variables
F(3, 2116) = 1.98
Prob > F 0.1146

Table B.2: Test of joint signi�cance of phase dummy variables
H0:
( 1) phase1 = 0
( 2) phase2 = 0
( 3) phase3 = 0

F( 3, 123) = Prob > F = 0.2472
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Figure B.1: Residual plots
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Table B.3: Test of balancing property - Employees, emissions, energy use and
sector

Mean t-test

Variable Treated Control %bias t p>|t|

empl2001 183.98 160.05 12.6 2.86 0.004

emis2001_empl 84.98 125.58 -6.9 -4.61 0.000

entot2001 12.065 11.732 23.4 5.27 0.000

10.nace_2_dig_n .05293 .03138 6.1 1.75 0.081

15.nace_2_dig_n .05482 .02987 7.8 2.02 0.044

16.nace_2_dig_n .01323 .00076 16.4 2.44 0.015

17.nace_2_dig_n .05671 .03856 6.8 1.39 0.166

20.nace_2_dig_n .12854 .09093 11.7 1.96 0.050

21.nace_2_dig_n .06805 .0172 21.2 4.12 0.000

22.nace_2_dig_n .01134 .00926 2.3 0.33 0.738

23.nace_2_dig_n .11909 .26219 -57.3 -6.02 0.000

24.nace_2_dig_n .24953 .20794 10.6 1.61 0.108

25.nace_2_dig_n .01134 .0104 0.9 0.15 0.882

26.nace_2_dig_n .09452 .21588 -49.7 -5.52 0.000

27.nace_2_dig_n .13989 .08563 17.8 2.80 0.005

Ps R2 LR chi2 p>chi2 MeanBias MedBias B R %Var

0.083 121.52 0.000 15.7 11.1 69.8* 1.66 67

* if B>25%, R outside [0.5; 2]
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Table B.4: Test of balancing property - Employees, emissions and sector
Mean t-test

Variable Treated Control %bias t p>|t|

empl2001 263.51 254.55 4.7 0.72 0.473

emis2001_empl 82.825 73.724 1.6 1.31 0.191

10.nace_2_dig_n .05376 .01613 10.9 3.97 0.000

15.nace_2_dig_n .0457 .04288 0.9 0.26 0.791

16.nace_2_dig_n .00941 .00699 3.2 0.52 0.605

17.nace_2_dig_n .10753 .03737 25.7 5.27 0.000

20.nace_2_dig_n .10081 .09503 1.8 0.37 0.708

21.nace_2_dig_n .10484 .09113 5.5 0.89 0.374

22.nace_2_dig_n .00806 0 9.2 2.46 0.014

23.nace_2_dig_n .09409 .16344 -27.6 -4.01 0.000

24.nace_2_dig_n .24194 .24892 -1.8 -0.31 0.754

25.nace_2_dig_n .00806 0 7.4 2.46 0.014

26.nace_2_dig_n .0672 .11411 -18.6 -3.16 0.002

27.nace_2_dig_n .15591 .17903 -7.7 -1.19 0.233

31.nace_2_dig_n .00269 .00497 -5.6 -0.71 0.476

* if variance ratio outside [0.87; 1.15]

Ps R2 LR chi2 p>chi2 MeanBias MedBias B R %Var

0.035 70.89 0.000 8.8 5.6 43.9* 1.99 100

* if B>25%, R outside [0.5; 2]
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Figure B.2: Distribution of Propensity Score for Treated and Untreated

48



Figure B.3: Comparison of emission intensity between ETS and non-ETS �rms
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Table B.5: DID-estimation. Comparison of estimates from matched and un-
matched samples

Matched sample Unmatched sample
ETS 3.308*** 3.793***

(0.402) (0.306)

ETS*Phase 1 0.196 0.019
(0.259) (0.198)

ETS*Phase 2 -0.308 -0.624***
(0.378) (0.218)

ETS*Phase 3 0.161 -0.449*
(0.510) (0.252)

Relative Energy Prices (log) -0.315*** -0.330***
(0.053) (0.060)

Employees (log) -0.366** -0.446***
(0.216) (0.073)

Industry - Wood processing 0.065 -0.698
(0.981) (0.529)

Industry - Food and Textile 1.179 0.316
(1.004) (0.437)

Industry - Metals and minerals 1.977** 1.012*
(0.970) (0.515)

Industry - Chemicals 1.989** 1.266**
(0.975) (0.503)

Industry - Other industry -0.168 -0.216
(0.201) (0.161)

Phase 1 -0.353 -0.175
(0.230) (0.159)

Phase 2 0.051 0.426**
(0.344) (0.244)

Phase 3 -0.176 0.514**
(0.478) (0.230)

R2 0.5301 0.5215

Constant 2.564* 3.498***

N 1088 2126
Standard errors in parenthesis
* p<0.10, ** p<0.05, *** p<0.01
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C Full regression output
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Table C.1: Regression results on matched sample with employees as proxy for
output
Linear regression Number of obs = 1088

F( 14, 123) = 34.29
Prob > F = 0.0000
R-squared = 0.5301
Root MSE = 1.6945

(Std. Err. adjusted for 124 clusters in orgnr)
ln_emisint_empl Coef. Robust Std. Err. t P > |t| [95% Conf. Interval]
ln_relen -.3154075 .0527667 -5.98 0.000 -.419856 -.210959
ln_empl -.3664523 .1628544 -2.25 0.026 -.6888126 -.0440919
old_ets 3.307867 .4022732 8.22 0.000 2.511592 4.104142
ets_1 .1959613 .2590185 0.76 0.451 -.31675 .7086726
ets_2 -.307993 .3779365 -0.81 0.417 -1.056095 .4401092
ets_3 .1608321 .5096788 0.32 0.753 -.8480458 1.16971
d_woodproc .0649483 .9813688 0.07 0.947 -1.877611 2.007508
d_text 1.178586 1.004489 1.17 0.243 -.8097377 3.16691
d_metal 1.976723 .9695127 2.04 0.044 .0576322 3.895814
d_chemi 1.988639 .9749143 2.04 0.044 .058856 3.918422
d_otherind -.1677572 .2013362 -0.83 0.406 -.56629 .2307755
d_power 0 (omitted)
fase1 -.3532429 .2296852 -1.54 0.127 -.8078905 .1014048
fase2 .0513012 .3438545 0.15 0.882 -.6293378 .7319402
fase3 -.1764328 .4784223 -0.37 0.713 -1.12344 .7705748
_cons 2.564467 1.376668 1.86 0.065 -.1605633 5.289497

Table C.2: Regression results on original sample with employees as proxy for
output
Linear regression Number of obs = 2126

F( 9, 273) = 46.50
Prob > F = 0.0000
R-squared = 0.5215
Root MSE = 1.8905

(Std. Err. adjusted for 274 clusters in orgnr)
ln_emisint_power Coef. Robust Std. Err. t P > |t| [95% Conf. Interval]
ln_relen -.3298743 .0601134 -5.49 0.000 -.448219 -.2115296
ln_empl -.4462062 .0922889 -4.83 0.000 -.6278947 -.2645178
old_ets 3.792832 .3061269 12.39 0.000 3.190163 4.395502
ets_1 .0194469 .1982204 0.10 0.922 -.3707879 .4096817
ets_2 -.6243018 .2182495 -2.86 0.005 -1.053968 -.1946358
ets_3 -.4487793 .2520318 -1.78 0.076 -.9449522 .0473935
d_woodproc -.6976776 .5286675 -1.32 0.188 -1.738461 .3431056
d_text .3158027 .4369903 0.72 0.470 -.5444963 1.176102
d_metal 1.012289 .5152008 1.96 0.050 -.0019829 2.02656
d_chemi 1.266463 .5003136 2.53 0.012 .2815 2.251426
d_otherind -.2161874 .161268 -1.34 0.181 -.5336744 .1012997
d_power 0 (omitted)
fase1 -.1754376 .1592661 -1.10 0.272 -.4889835 .1381083
fase2 .4263594 .2033318 2.10 0.037 .0260618 .826657
fase3 .5136091 .2298795 2.23 0.026 .0610472 .966171
_cons 3.497849 .6652625 5.26 0.000 2.188152 4.807545
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Table C.3: Regression results on matched sample with electricity use as proxy
for output
Linear regression Number of obs = 1228

F( 14, 152) = 10.47
Prob > F = 0.0000
R-squared = 0.3191
Root MSE = 1.8207

(Std. Err. adjusted for 153 clusters in orgnr)
ln_emisint_power Coef. Robust Std. Err. t P > |t| [95% Conf. Interval]
ln_relen -.2723502 .1032756 -2.64 0.009 -.4763911 -.0683093
ln_empl -.5943885 .1382645 -4.30 0.000 -.8675569 -.3212201
old_ets 2.123336 .3288687 6.46 0.000 1.473592 2.77308
ets_1 .0303815 .288448 0.11 0.916 -.5395034 .6002665
ets_2 -.7289948 .3231039 -2.26 0.025 -1.367349 -.0906404
ets_3 -.589254 .3570849 -1.65 0.101 -1.294744 .1162365
d_woodproc -1.415606 .7305304 -1.94 0.055 -2.858911 .0276983
d_text .0687864 .6655958 0.10 0.918 -1.246227 1.3838
d_metal -.0675327 .6378063 -0.11 0.916 -1.327643 1.192577
d_chemi .4813906 .6593344 0.73 0.466 -.8212524 1.784034
d_otherind -.514112 .2461121 -2.09 0.038 -1.000354 -.0278699
d_power 0 (omitted)
fase1 -.2465067 .246501 -1.00 0.319 -.7335173 .2405038
fase2 .5684633 .3420292 1.66 0.099 -.1072818 1.244208
fase3 .4922667 .3704645 1.33 0.186 -.2396578 1.224191
_cons .2982976 1.046928 0.28 0.776 -1.770112 2.366707

Table C.4: Regression results on matched sample with revenue as proxy for
output
Linear regression Number of obs = 1198

F( 14, 152) = 22.48
Prob > F = 0.0000
R-squared = 0.4872
Root MSE = 1.7388

(Std. Err. adjusted for 153 clusters in orgnr)
ln_emisint_power Coef. Robust Std. Err. t P > |t| [95% Conf. Interval]
ln_relen -.3386849 .0593 -5.71 0.000 -.4558435 -.2215262
ln_empl -.3494299 .1218852 -2.87 0.005 -.5902377 -.108622
old_ets 3.027954 .3362296 9.01 0.000 2.363668 3.692241
ets_1 .1758667 .2879947 0.61 0.542 -.3931227 .744856
ets_2 -.3859746 .3161313 -1.22 0.224 -1.010553 .2386042
ets_3 -.1717386 .3800299 -0.45 0.652 -.9225615 .5790842
d_woodproc -.0888688 .8044168 -0.11 0.912 -1.67815 1.500413
d_text .1450302 .791462 0.18 0.855 -1.418656 1.708717
d_metal 1.277406 .7685697 1.66 0.099 -.2410526 2.795864
d_chemi 1.55464 .7890751 1.97 0.051 -.004331 3.113611
d_otherind -.4582809 .1828108 -2.51 0.013 -.8194591 -.0971027
d_power 0 (omitted)
fase1 -.5088972 .2474205 -2.06 0.041 -.9977243 -.0200701
fase2 .0443201 .2923766 0.15 0.880 -.5333266 .6219668
fase3 -.0311892 .3603482 -0.09 0.931 -.743127 .6807486
_cons -4.64175 1.077988 -4.31 0.000 -6.771524 -2.511976
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