

A Combined Wastewater Treatment and Resource Recovery Facility towards a Circular Economy

Resource Recovery and Utilization

Melesse Eshetu Moges (PhD)

Norwegian University of Life Sciences (NMBU)

1. Introduction

• Population Growth and Global demand for Water, Phosphorus, and Energy

Sludge

- Domestic wastewater a resource with multi-dimensional values It contains –Nutrient, Energy and Water - all in one place
 - ✓ Circular economy and Green development
- How do we strategically manage domestic wastewater towards sustainable means of Resource Recovery?
- ➢ In what ways can we integrate new concepts and technologies to sustainably achieve both resource recovery and environmental and public health safety?

The Research

Council of Norway

Approach and System Description

- BT Buffer tank
- BFDS Biofiltration and disinfection system

Results Resource recovery and utilization at minimum risk

A) Total P concentrations (mg/L), in AD effluent and in the different column effluents andB) Average NH4-N in mg/L in the raw BW, AD effluent, in the different column effluents

7

Melesse Eshetu 2019 Norwegian University of Life Sciences (NMBU)

Effect of the different filter media on removal of indicator microorganisms

A hygienically safe NPK – nutrient solution which can be used as a liquid fertilized can be produced

Useful resources in wastewater (nutrients, energy and water) can be recovered

*(Butkovskyi et al. 2018, Butkovskyi et al. 2016, de Wilt, et al. 2016)

Removal of Pharmaceutical residues by the anaerobic digestion and post filtration system

system	RBW	AnBReff	After post filtration	Tap water			
	ng/l	ng/l	ng/l	ng/l			
2-Hydroxy atorvastatin (active metabolite of Atorvastatin	16.4	621	5.7	4.3	-3687%	99%	
Acetaminophen (Paracetamole)	220445	13058.5	9.6	0	94%	100%	
Amitriptylene (antidepressant)	21.5	19	0.3	0.1	12%	98%	
Atorvastatin (for prevention of cardiovascular diseases, lipid- lowering, anti-Cholestrol)	37	467	17.9	29	-1162%	96%	
Caffein	267974	68848	0.5	0	74%	100%	
Chlorphenamine (antiallergic)	5.7	49	79.7	0.5	-760%	-63%	
DEET (N,N-Diethyl-m-toluamide or N,N-Diethyl-3- methylbenzamide)	257.5	212	2	0.1	18%	99%	
Losartan (Antihypertensive)	1202.6	238.5	4	0.6	80%	98%	
Metoprolol (antihypertensive, conjestive heart failure, prevention of migraine headaches)	0	185.6	43	118.7		77%	
N-Acetylsulfamethoxazole (antibiotic)	55.9	9.7	7.3	0.77	83%	25%	99%
Trimetoprim (antibiotic)	114.6	82.8	0	0	28%	100%	

Gard Østbø & Petter L Grimstad (2019). PPCP i avløpsvann. Prosjektoppgave KJM314. KBM, NMBU.

Resource recovery and utilization at minimum risk

Biofertilizer

Struvite

Biochar = Heat+Sorbent+ Soil ammendment

Melesse Eshetu 2019 Norwegian University of Life Sciences (NMBU)

Recovered nutrient soultion

Norwegian University of Life Sciences (NMBU)