

Models for economic assessments of second generation biofuel production Eirik Jåstad

Bio4fuel lunch meeting – 01.02.19

My project

- Models for economic assessments of second generation biofuel production
- PhD at MINA
- Work package Energy, Fuels and Economics (WP1.3)
- Working with:
 - -Economical aspects of biofuel production in the Nordic countries
 - Working with partial equilibrium models

Papers

- I am finish with 3 studies.
 - Modelling of uncertainty in the economic development of the Norwegian forest sector (published)
 - Large-scale forest-based biofuel production in the Nordic forest sector: Effects on the economics of forestry and forest industries (published)
 - Modelling effects of policies for increased production of forest-based biofuel in the Nordic countries (submitted)
- Upcoming:
 - Greenhouse gas effects and energy system effects of various bioenergy scenarios
 - -Optimal use of Nordic biomass; energy or industrial products?

Study: Modelling effects of policies for increased production of forest-based biofuel in the Nordic countries

Raw materials

- The Nordic forest sector harvest less roundwood than the growth
- Harvest less harvest residuals than possible

Nordic Forest Sector Model (NFSM)

- Spatial, partial equilibrium model
- MILP
- Maximising consumer plus producer surplus
- 29 products:
 - Spruce, pine, and non-coniferous sawlogs and pulpwood
 - -Harvest residuals
 - -13 final products

Norwegian University of Life Sciences

Main techno economic assumptions

• 58% efficiency

=> 1 m3 pulpwood = 120 L biofuel

- Biofuel can be made from:
 - Spruce, pine, and non-conifers pulpwood, residuals from sawmills, harvest residuals, and a mix of them

Assumed costs of different production units

Production unit [million L/year]	79	157	236	315
Labour input [h/1000 L]	0.57	0.44	0.38	0.42
Fix costs [€/L/year]	0.56	0.49	0.45	0.42
Investment cost [€/L/year]	0.40	0.34	0.31	0.29
Input roundwood [million m3]	0.66	1.3	2.0	2.6

Liquid fuel in the Nordic countries

Market price and taxes

VAT and minimum selling price of diesel and gasoline

	Norway	Sweden	Finland	Denmark
VAT [%]	25	25	24	25
Selling price diesel [€/L]	1.21	1.08	1.17	1.13
Selling price gasoline [€/L]	1.36	1.34	1.34	1.31
Fraction of biofuel today	13%	~30%	7%	
Biofuel blending mandate 2020	20%	~30%	20%	10%
Advanced biofuel (physic amount)	4%			

Aim of the study

 Which subsidy/policy scheme is most economically efficient when introducing large scale biofuel plant

Scheme	Abbreviation	Min level	Max level
Feed in premium	Feed-in	0 €/L	1.1 €/L
Increase in fossil fuel tax	Fossil inc	0.73 €/L	1.8 €/L
Investment support	Invest	0%	100%
Quota obligation for all Nordic countries	Quota	0%	50%
Quota obligation each country independently	Quota 2	0%	50%
Raw material support	Raw	0 €/MWh _{input} (0 €/L biofuel)	75 €/MWh _{input} (1.25 €/L biofuel)
Tax exemption	Тах	0%	100%

Biofuel production vs. fuel price

Fossil fuel spot price today: 0.44 €/L Fossil fuel selling price today: 14 kr/L ~= 1.75 €/L

Annually Nordic fuel consumption: ~20 billion L

Production costs and subsidy level

Fossil fuel reference price in 2030: 0.73 €/L

Forest sector implications

Conclusion

- Implementation of large-scale forest biofuel will influence the forest sector substantially and will be costly
- Impacts in general
 - Harvest levels (+)
 - Utilization of harvest residues (+)
 - Biomass imports (+)
 - Wood use/production in heating and pulp and paper (-)
- Breakeven price for forest based biofuel: 1.3 €/L
- Public support needed producing 2.4 billion L biofuel: 0.67-0.91 €/L

