

Large-scale forest-based biofuel deployment in the Nordic forest sector: Effects to the economics of forestry and forest industries

Eirik Ogner Jåstad, Per Kristian Rørstad, Torjus Folsland Bolkesjø Bio4Fuels Days – 12.10.18

Norwegian University of Life Sciences

My work in Bio4Fuels (WP1.3)

- Modelling and assessments of wood biomass markets and bioenergy policies
- Examples:
 - What are the forest sector value chain implications of large-scale biofuel production?
 - How may learning affect competitiveness?
 - What are the implications to raw material prices?
 - What are the best locations biofuel plants?
 - Impacts of policies

Biofuels in the Nordic countries

- So far, mainly first-generation biofuel
- Small amount of second-generation raw materials

Nordic targets and policies

- Norway
 - Quota obligation
 - At least 3.5% (2018), 8% (2020), 16% (2030) advanced biofuel with doublet counting
- Sweden
 - Quota obligation
 - CO2 reduction
 - Tax reduction
- Finland
 - Quota obligation
- Denmark
 - Quota obligation
- EU
 - Double counting
 - GHG emission reduction
 - Max 7 % food-based biofuel

Targets for biofuel in the liquid fuel mix

	2018	2020	2030
Norway	10%	20%	
Sweden – diesel	19.3%		70%
Sweden - gasoline	2.6%		70%
Finland	15%	20%	30%
Denmark	5.75%	10%	
European Union		10%	14%

Nordic Forest Sector Model (NFSM)

- Spatial, partial equilibrium model
- MILP
- Maximising consumer plus producer surplus
- 29 products:
 - Spruce, pine, and non-coniferous sawlogs and pulpwood
 - -Harvest residuals
 - -13 final products

Norwegian University of Life Sciences

Forest sector

- The Nordic forest sector harvest less roundwood than the growth
- Harvest less harvest residuals than possible
- 40% biofuel production from wood would require about 2/3 of the current harvest

Model study: Scenarios and main assumptions

• 58% efficiency

=> 1 m3 pulpwood = 120 L biofuel

- Biofuel can be made from:
 - Spruce, pine, and non-conifers pulpwood, residuals from sawmills, harvest residuals, and a mix of them

Scenarios	0%	10%	20%	30%	40%
Production [billion L]	0	2.9	5.8	8.7	11.6

Model results: Roundwood consumption

- Slightly increase at the sawmill
- Reduction at pulp and paper mills
 Up to 33%
- Biofuel production need up to 98 million m3
 - -2/3 of the initial harvest

Model results: Change in Nordic wood balance and pulpwood prices

INDIWE gian University of Life Sciences

Effects to forestry

- Increase in use of
 - -Sawlogs 3%
 - -Pulpwood 25%
 - -Roundwood total 15%
 - -Harvest residuals 500%

Model results: Impacts to the net revenues in the forest sector

Norwegian University of Life Sciences

Model results: Location of biofuel production (million liter/year)

! ⁺ ^B |

Conclusion

- Implementation of large-scale forest biofuel will influence the forest sector substantially
- Impacts in general
 - Harvest levels (+)
 - Utilization of harvest residues (+)
 - Biomass imports (+)
 - Wood use/production in heating and pulp and paper (-)
- Increasing biomass prices should be accounted for at large deployment levels

