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Abstract

The Democratic Republic of Congo (DRC) hosts large parts of the Congo Basin,
the second biggest rainforest on the planet. The forest is a biodiversity hotspot,
provides for the livelihoods of millions of people and serves important regulatory
functions for the regional and global climate. Despite ambitious commitments to
halt and reverse forest loss in the DRC by 2030, deforestation continues under the
pressure of a rapidly growing population. Structured in three papers, this thesis
broaches separate yet related topics connected to the Congo Basin rainforest of the
DRC, particularly concerning the extraction of minerals in the eastern part of the
country and the attempt to conserve the forest by putting it under protection. The
analyses rely on econometric impact evaluation methods, geo-spatial data analysis
of remotely sensed data, and household survey data analysis following fieldwork in
the South Kivu province in the east of the country.

The first paper focuses on the role mineral extraction plays in the deforesta-
tion context of the eastern provinces of North and South Kivu, Maniema, Ituri and
Haut-Uele. Mineral abundance and persisting armed conflict have given rise to a
dominant artisanal mining sector in this region. Where new minerals are discovered,
population pulls can induce sudden accelerations of human activities even in remote,
sparsely populated areas. Using novel data on post-forest land use and a staggered
difference-in-difference model, the analysis uncovers strong deforestation trigger ef-
fects within at least 5km distance from newly opened mining sites in the forest.
Within this distance, an average additional 4 percentage points of forest cover is
cleared 10 years after the beginning of mining operations. Particularly farming and
settlement expansion around mines lead to forest loss that was 28 times as high as
the area cleared directly for mineral extraction itself, highlighting the role of mining
in attracting other drivers of deforestation. In this way, at least 6.6% of the total
deforestation in the study area can be explained by direct and indirect impacts of
mining - much more than previously assumed.

Artisanal mining is also central to the second paper of the thesis, although with
a focus directed at its livelihood implications. The study is based on data collected
during fieldwork in villages adjacent to Kahuzi-Biega National Park and Itombwe
Nature Reserve in the South Kivu province of the eastern DRC. The role artisanal
mining plays for local communities in these forested landscapes was investigated
through the lens of a livelihood diversification framework. In the surveyed villages,
artisanal mining was widespread and served as both complement and alternative
to traditional farming livelihoods. Results from an analytical model as well as an
empirical hurdle regression model suggested that particularly land-poor households
are relying on mining as a source of income. The empirical estimates further showed
a potential role of artisanal mining in increasing food security on the household
level, thereby emphasising its function as a safety net for the rural poor.

The third paper shifts the focus to protected areas (PAs) as the predominant for-
est conservation strategy in the DRC. Although their remote location has provided a
natural protection against deforestation in the past, progressing deforestation fron-
tiers from agricultural expansion and resource extraction are increasingly exerting
pressure on PAs. Using a geographic regression discontinuity design at PA bound-
aries in the tropical moist forest biome that spans horizontally from west to east
across the country, the study investigates the status of protection and its change
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as anthropogenic pressure rises. To this end, a typology was developed, using the
remaining forest cover extent and the annual rate of loss as metrics to categorise
conservation context and performance. Results indicated that the remoteness of PAs
has been fading since 2000, with an increasing number giving in to anthropogenic
pressure. Of all assessed PA boundaries, 18% were found to have deforestation
sprawling inside, whereas 9% were able to actively contain it. Pressure may fur-
ther exacerbate in the future, as industrial-scale logging and mining operations are
expected to intensify in critical locations and create infrastructure that critically
weakens forest protection.
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Norsk sammendrag

Den Demokratiske Republikken Kongo (DR Kongo) er vertskap for store deler
av regnskogen i Kongobassenget, den nest største p̊a kloden. Skogen er et hotspot
for biologisk mangfold, gir livsgrunnlag for millioner av mennesker og har viktige
regulerende funksjoner for det regionale og globale klimaet. Til tross for ambisiøse
forpliktelser om å stanse og reversere tapet av skog i DR Kongo innen 2030, fort-
setter avskogingen. Denne avhandlingen er strukturert i tre artikler som tar for seg
ulike, men beslektede temaer knyttet til regnskogen i Kongobassenget i DR Kongo,
særlig utvinningen av mineraler i den østlige delen av landet og forsøket p̊a å bevare
skogen ved å etablere verneomr̊ader. Den baserer seg p̊a økonometriske metoder
for effektevaluering, romlige dataanalyser av fjernmålte data og data fra feltarbeid
i Sør-Kivu provinsen.

Den første artikkelen fokuserer p̊a hvilken rolle mineralutvinning spiller i avskogin-
gen i de østlige provinsene Nord- og Sør-Kivu, Maniema, Ituri og Haut-Uele. Min-
eralrikdom og vedvarende væpnet konflikt har skapt grunnlaget for en stor småskala
gruvesektor i regionen. N̊ar nye mineraler oppdages, kan det føre til en økning i
menneskelig aktivitet, selv i avsidesliggende, tynt befolkede omr̊ader. Ved hjelp av
nye data om arealbruk etter skogrydding og en difference-in-difference modell viser
analysen sterke utløsende effekter i form av økt avskoging innenfor en avstand p̊a
minst 5 km etter at gruvevirksomhet har startet. Innenfor denne avstanden ryddes
i gjennomsnitt ytterligere 4 prosentpoeng av skogdekket etter 10 år. Resultatene
viser at særlig jordbruk og ekspansjon av bosetninger rundt gruver fører til et tap av
skog som er 28 ganger større enn arealet som ryddes direkte for mineralutvinning.
P̊a denne m̊aten kan minst 6.6% av den totale avskogingen i studieomr̊adet forklares
med direkte og indirekte p̊avirkning fra gruvedrift - mye mer enn tidligere antatt.

Småskala gruvedrift st̊ar ogs̊a sentralt i den andre artikkelen av avhandlingen,
men her er fokuset rettet mot konsekvensene for livsgrunnlaget. Artikkelen er basert
p̊a data som ble samlet inn i løpet av feltarbeid i Kahuzi-Biega nasjonalpark og Ito-
mbwe naturreservat i Sør-Kivu-provinsen i den østlige delen av DR Kongo. Gjennom
et teorirammeverk for diversifisering av inntektsgrunnlaget (livelihoods diversifica-
ton framework) undersøker artikkelen hvilken rolle småskala gruvedrift spiller for
lokalsamfunnene i disse skogkledde landskapene. Jobbing i gruvedrift er utbredt i de
felt-landsbyene og fungerer b̊ade som et supplement og et alternativ til tradisjonelt
jordbruk. Resultatene fra en analytisk modell og en empirisk regresjonsmodell tydet
p̊a at særlig landfattige husholdninger i stor grad var avhengige av gruvedrift som in-
ntektskilde. De empiriske estimatene viste videre at småskala gruvedrift kan bidra til
å øke matvaresikkerheten p̊a husholdningsniv̊a, noe som understreker gruvedriftens
funksjon som sikkerhetsnett for de fattige p̊a landsbygda.

Den tredje artikkelen fokuserer p̊a skogbevaring i form av vernedeomr̊ader som
den dominerende strategien for skogbevaring i DR Kongo. Selv om den avsidesliggende
beliggenheten tidligere har gitt en naturlig beskyttelse mot avskoging, blir ver-
neomr̊adene i økende grad utsatt for press som følge av landbruksekspansjon og
ressursutvinning. Ved å bruke i en geografisk regresjonsdiskontinuitetsdesign i det
regnskogbiomet som strekker seg over hele landet, undersøker studien statusen til
vernet og hvordan den endrer seg etter hvert som det menneskeskapte presset øker.
Det ble utviklet en typologi der gjenværende skogdekke og årlige avskoging ble brukt
som kriterier for å kategorisere vernekontekst og verneeffektivitet. Resultatene ty-



vii

der p̊a at verneomr̊adene har blitt mindre avsidesliggende siden år 2000, s̊a gir de
i økende grad etter for menneskeskapt press. Denne trenden kan bli ytterligere
forsterket i fremtiden, ettersom industriell hogst og gruvedrift forventes å øke og
medføre ny infrastruktur som har vist seg å svekke skogvernet betydelig. 18% av
grensene, viste seg å ha avskoging p̊a innsiden, mens bare 9% stod imot etter at
avskogingsfronten. Dette presset kan bli ytterligere forsterket i fremtiden, ettersom
industriell hogst og gruvedrift forventes å øke og medføre ny infrastruktur som har
vist seg å svekke skogvernet betydelig.
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Introduction

1.1 Background of the thesis

Forests are of vital importance to life on the planet. They are crucial for bio-
diversity by providing habitats, fulfil important regulatory functions for the global
and regional climate and water cycles (Duveiller et al. 2021; Abera et al. 2024),
directly provide for the livelihoods of millions of people (Angelsen et al. 2014) and
are essential to climate change mitigation efforts (IPCC 2023). This is especially
true for tropical forests, which constitute about 45% of the worlds forest and yet
host 60% of all vascular plants (FAO and UNEP 2020). Due to the high exposure to
sunlight and rainfall around the equator, tropical forests are more productive than
others, leading to denser vegetation and large amounts of biomass and hence higher
carbon stocks (Ghazoul and Sheil 2010).

Despite their potential of being natural carbon sinks, continued deforestation and
forest degradation have compromised the net carbon footprint of tropical forests and
their climate regulatory properties (Harris et al. 2021; Boulton, Lenton, and Boers
2022). The Amazon, the largest rainforest on the planet, is already on the verge of
turning from a carbon sink to a net carbon source (Harris et al. 2021). Ecological
tipping points could further destabilise it and exacerbate these dynamics, as the
resilience of the Amazon continues to fade (Boulton, Lenton, and Boers 2022; Steffen
et al. 2018).

After the Amazon, the Congo Basin constitutes the second largest contiguous
rainforest. It also hosts 36% of all tropical peatland area, which alone stores around
two years of global carbon emissions (Crezee et al. 2022; Dargie et al. 2017). About
60 million people residing within or close to the Congo Basin rainforest rely directly
on it for their livelihoods (Eba’a Atyi et al. 2022). Although less than 70% of the
Congo Basin remains intact today and the stability of this unique ecosystem is at
stake as loss continues (Garcin et al. 2022; Shapiro et al. 2021), the area remains
under-researched compared to other major tropical forest areas (White et al. 2021).

This thesis focuses on the Democratic Republic of Congo (DRC), and in particu-
larly on its tropical moist forest biome, which is characterised as closed evergreen or
deciduous tropical forest with either seasonal or low rainfall variability (Vancutsem
et al. 2021). About 106 million ha of undisturbed tropical moist forest and around
60% of the Congo Basin is located within the DRC (Eba’a Atyi et al. 2022). Af-
ter Brazil, it is the country with the second largest extent of tropical moist forest,
hosting 11% of what is remaining on the planet (Figure 1.1).
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Figure 1.1: a Share of the worlds undisturbed tropical moist forest in 2023 by country.
b Trends in deforestation for major tropical moist forest countries. Both figures show
Tropical Moist Forest (TMF) data (Vancutsem et al. 2021).

Besides forests, the DRC is also among the most mineral abundant countries in
the world. Despite its richness in gold, coltan, cobalt and copper, amongst others,
the DRC is among the poorest countries in the world (United Nations Development
Programme 2022). In 2020, 79% of the population lived on less than 2.15USD a day
(World Bank 2025), and 41% faced severe food insecurity (FAO 2023). Government
provisioning of public services does not reach all parts of the country, as the state au-
thority remains fragmented and the infrastructure highly degraded (Schouten 2022).

While remote sensing studies have attempted to identify the main land uses
that cause forest loss in the country (Tyukavina et al. 2018; Masolele et al. 2024;
Shapiro et al. 2023), there is still much to be done to develop a better understand-
ing of the context and the dynamics in which these emerge. The thesis aims to
contribute to this end by exploring the context of deforestation drivers, livelihoods
and conservation in the DRC.

The first two chapters are set in the eastern DRC, one of the most mineral rich
regions on the planet (Figure 1.2). After the retreat of the mining industry with the
ignition of the first Congo war in 1996, exploitation became increasingly dominated
by artisanal extraction, with implications on both forests and traditional livelihoods
(Kilosho Buraye et al. 2017). As a consequence, mining became integral part in
the livelihoods of millions of households in the area. Where minerals deposits are
discovered, mineral rushes can lead to sudden increases in human activity even in
remotely located forest areas (Bryceson and Geenen 2016; Smith 2011). Using novel
data on post forest land uses (Masolele et al. 2024), the first chapter uncovers the
forest loss impacts of these mineral discoveries, whereas the second chapter highlights
the role of artisanal mining in livelihood diversification strategies of people working
in the sector. Finally, the third chapter zooms out to the entire tropical moist forest
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biome of the DRC and evaluates protected areas (PAs) as the most prevalent forest
conservation tool, specifically focussing on frontier processes and the potential of
PA boundaries to withstand deforestation pressure once their remoteness starts to
fade.

Paper III
Paper I

Paper II

Figure 1.2: Map showing the study areas of the three papers presented in this thesis.

1.2 Preliminaries and definitions

Before diving into the thesis, it is useful to clarify essential underlying terminol-
ogy and concepts. Starting with the definition of forest, what classifies as forest can
vary substantially and also needs careful consideration when choosing the appropri-
ate data set for an analysis (see Section 1.7.1).

A starting point is the distinction into forest and other tree covered land. For
instance, the FAO defines forest as land of more than 0.5 hectares with more than
10% tree cover, and at least 5 meter canopy height (FAO 2020). The definition
explicitly includes agroforestry systems and tree plantations for timber and other
commodities. Such highly managed landscapes do not fall within the scope of this
thesis, since they are in themselves irrelevant for the understanding of deforestation
dynamics.

Within the forest category, further distinctions can be made along different gra-
dients, such as the openness of the canopy, the age of the forest, the altitude, and
the moisture level (i.e. dry, moist or flooded) (Shapiro et al. 2023). The resulting
typology of forests is complex and fluent, and the remote sensing of deforestation is



4 Introduction

commonly simplified by applying a minimum threshold of forest cover that is suit-
able to reflect ”natural” forest for the region and biome of interest. For the Congo
Basin, this threshold is often set at 60% canopy cover to distinguish forest from
other land with tree cover, such as fallow agricultural land (Molinario et al. 2017;
Shapiro et al. 2023). A different approach was chosen by Vancutsem et al. (2021),
who classified land with tree cover in absence of historical canopy cover disturbances
as undisturbed forest, and thereby distinguished disturbed and re-grown forest from
old-growth forest (see Section 1.7.1).

The understanding of deforestation throughout this thesis is in line with that
of the FAO, thus defining it as a permanent conversion of forest to other land uses
(FAO 2020). Forest degradation is understood as a change in forest conditions,
induced for instance as a consequence of forest fragmentation, logging, droughts or
fires, that compromises ecosystem functionings (Lapola et al. 2023; Ghazoul and
Chazdon 2017). Given that the definition of degradation is rather broad, includes
gradual small-scale but also macro processes, it is more challenging to quantify than
deforestation. This thesis thus focuses mainly on deforestation events, although
degradation is an increasing problem that requires more attention in its own right.

The terminology describing causes of forest cover change follows that of Meyfroidt
(2016) who makes a useful distinction between causal effect and causal mechanism.
Causal effects are defined as the changes in outcomes, such as deforestation or for-
est degradation, caused by the existence of some factor of interest. They can be
described in a potential outcomes framework, as further specified in section 4 of
this introduction. A causal mechanism is a process through which the causal effect
impacts an outcome. In complex processes like land cover change, single mecha-
nisms are seldomly sufficient to explain observed dynamics (Meyfroidt 2016), which
emphasises the role of context in the analysis of deforestation drivers.

It is useful to further distinguish causes into direct (proximate) causes and indi-
rect (underlying) causes of forest change (Angelsen and Kaimowitz 1999; Geist and
Lambin 2001). Indirect causes are factors that lead to the occurrence of a direct
cause. For instance, population growth does not directly lead to deforestation, but
it can be causally linked to agricultural expansion which does. Indirect and direct
causes can thus be thought of as linked in a causal chain, in which indirect causes
lead to the direct cause located at the end of the chain, often the post forest land
use (Meyfroidt 2016).

A concept particularly used in Paper I of the thesis is that of a trigger fac-
tor. A trigger of deforestation explains the time and the place of a deforestation
event (Meyfroidt 2016). Especially in core forest areas that would otherwise remain
shielded from frontier processes due to their inaccessibility, trigger factors can ex-
plain the emergence of disturbance events. Mineral discoveries are an example of
deforestation triggers, as they can lead to rapid intensification of human activity in
previously remote forests (see Paper I). Given the importance of forest integrity for
ecosystem resilience and biodiversity, trigger dynamics can give crucial insights for
forest conservation strategies (Haddad et al. 2015; Watson et al. 2018).
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1.3 The context of deforestation and livelihoods

in the DRC

The DRC is a large and heterogeneous country in central Africa. It contains
an area of 235 Mha, of which 44% is covered by dense rainforest (Vancutsem et
al. 2021). The resulting inaccessibility of many areas, but also protracted conflict
have given rise to a fragile state that is not able to provide services in many parts
of the country. A dysfunctional transport infrastructure and the territorial pres-
ence of a variety of armed groups, especially in the eastern DRC, pose obstacles
for lasting improvements of the situation (Schouten et al. 2022). Beyond the ac-
tivities of countless paramilitary groups with scattered agendas, access to land has
been a recurring source of conflict (Van Acker 2005). Persistent tensions involve
different sets of actors, for instance pastoralists and farmers, local and immigrant
communities, and statutory and customary land right holders (Huggins 2010). Also
conservation policies and the extractive industries have created instances of friction
with customary land holders, often resulting in displacement of communities and
resistance (Inogwabini 2014; Geenen 2014).

The conflicts and the eroded state have contributed to the deterioration of rural
livelihoods in the country, lead to mass displacement and also conditioned the dis-
solving of agricultural markets (Cox 2012; Kelly 2014). Prior to the recent advance
of the M23 rebels that found its preliminary climax in early 2025 in the seizure of
North Kivu’s regional capital Goma, 5.8 million people in the DRC were already
internally displaced due to violence and conflict (McAuliffe and Oucho 2024). Even
before the latest wave of violence, extreme poverty was widespread: the DRC is
ranked 180th out of 193 countries on the Human Development Index (HDI) (United
Nations Development Programme 2022), and food insecurity is a serious issue in
many regions (“Food Assistance Outlook Brief” 2023, FAO 2023). In this challeng-
ing policy environment, addressing deforestation without adding more burden on
already deprived communities is a complex challenge.

Given the insecurity in parts of the country and the eroded infrastructure, ex-
tractive industries and large-scale agribusinesses that tend to drive deforestation in
many other tropical rainforest areas (Pendrill et al. 2019) have not fully settled in
the DRC (Ordway et al. 2017; Radley 2020; Eba’a Atyi et al. 2022). Forest loss
in most of the Congo Basin countries and particularly in the DRC is dominated
by shifting agriculture on a small scale (Masolele et al. 2024; Shapiro et al. 2023;
Tyukavina et al. 2018). More than 90% of all loss in the country is attributed to this
farming system in which fields undergo cycles of cultivation and vegetation regrowth
to restore soil fertility. Most deforestation occurs in proximity to roads and villages
in mosaics that have been termed the rural complex (Potapov et al. 2012; Molinario
et al. 2017; Shapiro et al. 2023). These mosaics consist of cultivated fields, fallow
land with regrowing vegetation, secondary forest, and settlement structures.

Also other activities that compromise forest integrity are mostly conducted arti-
sanally. Fuel wood collection and charcoal production, for instance, can lead to sub-
stantial forest degradation, especially in proximity to urban areas (Schure, Levang,
and Wiersum 2014), but usually have limited impact on deforestation. At the same
time, they satisfy the energy needs of a rapidly growing population and also provided
important income opportunities.
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Industrial logging in concessions is situated only in the western part of the coun-
try, but is less developed than in other Congo Basin countries and dwarfed by the
amount of timber that is harvested artisanally and processed in local chain saw
mills (Eba’a Atyi et al. 2022; Lescuyer et al. 2014). Artisanal logging occurs all
over the country, often illegally within a few kilometers distance to roads. However,
it affects only a few species and trees with a large diameter (Ferrari and Cerutti
2023; Lescuyer et al. 2014). A substantial share of the logs is exported to neigh-
bouring countries without proper documentation (Ferrari and Cerutti 2023). Where
industrial logging operations take place, forests roads can trigger deforestation by
providing access to previously remote forest areas (Kleinschroth et al. 2019; Slagter
et al. 2024). However, the only study that systematically evaluated deforestation
impacts of logging concessions in the DRC has not found increasing forest loss within
concession areas (Chervier et al. 2024).

Predominantly in the mineral-rich eastern and southern part of the country,
artisanal mining has become an important part in people’s livelihoods over the
past decades. Whereas the south is covered by dry woodlands, mineral deposits
in the east are often located in the tropical moist forest, and their exploitation has
significant impacts on its deforestation (Ladewig et al. 2024). A crucial aspect about
mineral-driven deforestation is its distinct location. Within the rural complex, forest
conversion mostly affects secondary forest and adjacent primary forest along forest
edges (Shapiro et al. 2023). For deforestation to move into core forests, however,
stronger incentives are required (Molinario et al. 2020). In the eastern part, minerals
provide such incentives due to the income opportunities they offer. Several studies
have described the unparalleled potential of mines to attract people even into the
most remote of places (Bryceson and Geenen 2016; Jønsson and Bryceson 2009;
Smith 2011). The impact of mineral rushes on surrounding forests is central to
Paper I of this thesis.

Also conflicts reportedly had their toll on core forests, as the extraction of forest
resources is a common coping strategy in times of hardship. Further, forests have
served as hiding places for displaced people and combatants alike (Draulans and
Krunkelsven 2002; Nackoney et al. 2014; Plumptre et al. 2016).

1.4 Economic theories of land use change

As the main driver of land use change, both globally and in the DRC, agricultural
expansion is at the core of economic theories that describe the process of forest
clearing (Curtis et al. 2018; Pendrill et al. 2019; Shapiro et al. 2023). A distinctive
feature that sets apart the different theories is the degree to which they assume actors
to operate within market environments (Angelsen 1999; Babigumira et al. 2014;
Meyfroidt et al. 2018). Benefits of land conversion, market prices and transport costs
often explain forest conversion in scenarios embedded in functioning agricultural
markets, such as the prominent von Thünen-type models (von Thünen 1826).

1.4.1 Land rent models

The essence of von Thünen’s work is the idea that actors decide to put land to
the use that provides the highest expected profit. In the case of agriculture, return
is assumed to increase with proximity to urban centres where markets are located,
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as transportation costs make farming increasingly unprofitable with the remoteness
of land. Where the costs of forest conversion are higher than the expected returns
of conversion to farmland, forest cover remains. Functioning roads are therefore
essential to explain forest clearing in this framework. Also other rent-determining
factors may contribute to the rate of agricultural expansion, such as productivity per
land area, market prices for agricultural outputs, and input costs (Angelsen 2010).

The von Thünen framework can give useful insights for forest conservation. First,
it can help to prioritise target areas for conservation that face particularly high
incentives of forest conversion. Much of the Congo Basin rainforest is protected by
its inaccessibility that makes most market-oriented land uses unprofitable. In more
accessible areas within road proximity, however, this passive protection is weakened,
showing in higher deforestation rates (Kleinschroth et al. 2019).

Conservation strategies aiming to prevent forest conversion then have different
levers they can use to reduce deforestation pressure. The first is to increase the
profitability of keeping forest standing rather than removing it. This can be done
either by reducing land rent from other uses, most notably agriculture, or by in-
creasing forest rent. Policies that reduce land rent are typically undesirable, as they
reinforce poverty and food insecurity, and - if a substantial share of agricultural
production serves subsistence needs - may be inefficient (see the following section
1.4.2 on imperfect market models) (Angelsen 1999). Thus, increasing forest rent rel-
ative to other land rent may be the preferred policy option, for instance by paying
land holders for conservation. Different mechanisms have been used in this attempt,
which are further explained in section 1.5.4.

A second way to conserve forest when land rent is determining forest conversion
are command-and-control policies. Where the land rent is higher than the forest
rent, deforestation can be restricted by public authorities. Paper III in this thesis
looks at protected areas as one such policy, although PAs have a bias to be placed
in remote areas where deforestation pressure is low regardless (see section 1.5.1). In
a context like the DRC, where state capacity to enforce policies is weak, command-
and-control can be of limited impact.

A third way to spare forest can be through promotion of livelihoods that are
not dependent on land expansion and deforestation. If other income generating
activities that are not involving forest clearance are available and profitable enough,
they provide incentives to substitute activities that cause deforestation. This was
observed, for instance, in Paper II in the case of mining. However, Paper I also
showed that mining itself causes deforestation, especially indirectly.

1.4.2 Models in imperfect markets

While land rent models may be able to explain some of the deforestation dy-
namics at the urban periphery and around larger towns, most agricultural produce
in the DRC is to satisfy subsistence needs (Moonen et al. 2016). Markets are fre-
quently imperfect or inaccessible, and even where transport infrastructure exists,
road taxes levied by armed groups can make its use for trade costly (Schouten et
al. 2022). Land rent models are thus often not accurate in explaining land cover
change in the DRC. Risk minimisation and “full belly” considerations, i.e., mini-
mal consumption requirements, also matter to explain households’ land use strate-
gies (Angelsen 1999; Moonen et al. 2016). Land use change in incomplete markets
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and subsistence-oriented production settings have been discussed early in the works
of Chayanov (1966) and Boserup (1965). The model of Paper II of this thesis in
which the livelihood diversification process of households is modelled is within this
tradition.

In Chayanovian models, agricultural expansion is driven by household character-
istics such as the number of “bellies to fill” in relation to the available labor force,
and the age of a household head (i.e. the life cycle stage of a household) (Babigumira
et al. 2014). Farmers mainly engage into clearing of new land when they are young,
and generally face a trade-off between farm labor and leisure (Angelsen 1999). As
opposed to the von Thünen model, wage rate is therefore not determined by the
market, but within the household. Population growth increases the overall required
amount of food in this context. In absence of off-farm labor opportunities, the
farmer is left with the choice to either intensify or expand agricultural production
(Erb et al. 2016).

According to Boserup (1965), decreasing marginal labor productivity and lack-
ing capital to intensify production by other means make expansion the preferred
choice, at least to the point where scarcity of land sets in (Meyfroidt et al. 2018).
Over the past six decades since Boserup, the relationship between intensification
and expansion has been subject to much debate. Whereas some argued that inten-
sification will enable more food production per area and thereby spare expansion of
agriculture into forests, others highlighted increasing land rents under productivity
gains as a driver of expansion (Angelsen and Kaimowitz 2001). Both hypotheses
have found contextual empirical support (Lambin and Meyfroidt 2011), and have
become known in the literature as the Borlaug hypothesis and the Jevon’s paradox,
respectively. Globally, the empirical trend has shown simultaneous increases in both
yield per area and agricultural area over the last decades (Ramankutty et al. 2018;
Rudel et al. 2009), and agriculture is considered by far the most important driver
of forest loss (Pendrill et al. 2019). However, the world has also seen an exorbitant
increase in population over the same period and thus requires more food.

Around urban centres and larger towns, the von Thünen model may provide
insights into the processes of land cover change in the DRC. Where transport costs
to local markets are low, forest clearing for market produce can be a major factor.
However, in remote areas with poor market access, land rent alone cannot explain
conversion dynamics. Here, forest loss is often driven by increasing need for land
under a growing population. For instance, Moonen et al. (2016) found increasing
deforestation around villages closer to the city of Kisangani and among households
selling produce on the market as predicted in von Thünen models, but also evidence
for Boserup’s hypothesis of agricultural expansion under a growing population. Also
Mayaux et al. (2013) and Ernst et al. (2013) found strong deforestation feedbacks
once the population density exceeded about 8 people per km2. As population density
grows further, shorter fallow periods on already converted land also reduce soil
fertility over time, requiring even more land for the same amount of agricultural
output (Ernst et al. 2013).

1.5 Forest conservation in the DRC

In this context, where deforestation is largely a poverty- and population-driven
phenomenon by small-holders under weak institutions, a crucial question is how
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conservation of the Congo Basin rainforest can be achieved without compromising
livelihoods of the people who depend on the forest and the land.

1.5.1 Protected areas

Protected areas (PAs) have been at the core of forest conservation policies in
the DRC (Inogwabini 2014). The World Database on Protected Areas (WDPA)
lists 60 terrestrial PAs throughout the country, covering 15% of its terrestrial sur-
face (WDPA 2024). Historically, the implementation of the first PAs goes back to
early colonial times and was aiming to conserve forest by preventing people from
accessing it (Inogwabini 2014). It followed the long-held idea of tropical rainforests
as a pristine, unpopulated space without human influence - a view that is increas-
ingly challenged by the understanding that humans have a long history of living
in these landscapes and have contributed to shaping ecosystems (Roberts, Hamil-
ton, and Piperno 2021). In the DRC, much of the conservation effort still relies
on exclusionary protection of forest (Inogwabini 2014; Simpson and Geenen 2021).
As a consequence, PAs often encounter low acceptance from communities living
in and around affected areas, which also weakens their conservation performance
(Inogwabini 2014; Kujirakwinja et al. 2019).

Limited capacity and funding to effectively enforce protection in the DRC has
given its PAs the reputation as ”paper parks” - areas where protection exists on
paper, but where consequences on deforestation are negligible when they are put to
the test. To strengthen the implementation and management of PAs, collaborations
between government and large international NGOs have emerged, and have shown
improved potential to withstand deforestation pressure (Debureaux et al. 2025).
However, co-managed PAs also tend to be located in more remote areas where their
potential of avoiding deforestation is not used.

Based on the discussion of economic theories above, pressure on PAs could arise
when expected rents from forest conversion are sufficiently high, but also when the
rural complex expansion reaches PA boundaries due to the increasing need for land
to feed a growing population. In terms of conservation outcomes, this means that
PAs maintain their forest cover if (i) expected profit from clearing forest remains
negative, i.e. the deforestation front has not arrived at PA boundaries (ii) rural
complex expansion comes to a halt, for instance through intensification of agriculture
or slowing down of population growth, or (iii) forest protection provided by PAs
effectively prevents deforestation. Paper III in this thesis establishes a typology
to systematically contextualise the effectiveness of PAs under varying deforestation
dynamics.

1.5.2 The forest code revision of 2002

Since the issue of a 1973 ministerial decree under the Mobutu regime, all land
in the DRC officially belongs to the state, regardless of its customary land use (Van
Acker 2005). This standpoint was reinforced under the forest code of 2002, which
declared all forest as state property, and as such gave the state authority to establish
PAs, productive areas for timber harvesting, or classified forest areas to be managed
under state mandate.

At the same time, the 2002 forest code laid the foundation for improved gov-
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ernance of forests and its resources. Drafted by FAO experts, it aimed at making
logging operations adhere to socially and environmentally sound practices while dis-
solving illegally signed contracts (Majambu et al. 2021). This involved the require-
ment to submit management plans in which companies expound how they intend to
incorporate such practices, including the rotational harvesting cycle that should al-
low forest to recover from logging disturbances, and the social contributions granted
to local communities residing in concession areas.

The forest code also, for the first time, recognised forests held under customary
land rights, and provided legal ground for the creation of conservation concessions.
Conservation concessions allow title holders to monetarise environmental services
provided by the forest without extracting any of its resources, as specified in Decree
n° 011/27 of 2011. Thus, they are particularly interesting for private companies to
sell carbon credits. At least 24 of these conservation concessions have been granted
since 2020 (Kengoum et al. 2024). Many conservation concessions are former logging
concessions that have been transformed, which has been criticised for providing the
perverse incentive of first extracting the highest value timber and then monetarising
what is left through carbon schemes, thereby undermining the intention behind
conservation concessions.

1.5.3 Community forest concessions

The first community forest concessions were established in 2017, 15 years and
three decrees after the revised forest code provided the legal basis for their creation.
Since then, 200 community forests were established, and 40 more are in process in
the beginning of 2025 (Forest Management Directorate 2025).

Community forest concessions give communities who have customary forest rights
the exclusive and irrevocable right to manage up to 50,000 ha of forest according to
their own terms of forest use (Vermeulen and Karsenty, 2017). It thus gives them
the chance to sustainably use forest resources according to an approved management
plan while securing it against the appropriation and exploitation by other actors.

Whether or not community forests can become a model for more participatory
landscape conservation approaches with involvement of communities in land use
decisions has to be seen, as implementation is still in its infancy and impacts are
yet to be evaluated. It has already been highlighted that the establishment process
of community forests is costly and not viable for communities without external
support, as it requires the mapping of the forest, the creation of a forest inventory
and a management plan (Lescuyer et al. 2014).

1.5.4 Incentive-based mechanisms

Incentive-based conservation mechanisms are often targeting land rents and aim
at making forest conversion less profitable than forest conservation. Mechanisms
include Payments for Environmental Services (PES), carbon credits and conditional
cash transfers, although the borders between them are blurry.

A large global forest conservation framework is the ”Reducing emissions from de-
forestation and forest degradation” initiative as established under the Paris agree-
ment, more commonly known by its acronym REDD+. The ”+” signifies other
forest-related activities that mitigate climate change. It works by offering countries
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results-based payments for reducing their deforestation compared to a historical ref-
erence level. Funding comes from bilateral and multilateral aid payments, corporate
investments and the voluntary carbon market. Depending on the kind of effort that
was undertaken, benefit-sharing mechanisms distribute the funds to the projects,
jurisdictions, communities or households that engaged in avoiding deforestation,
thereby increasing forest rent relative to the rent from other land uses.

A major controversy with REDD+ has been concerning the question of addition-
ality, as the amount of avoided deforestation is frequently calculated from inadequate
historical baselines that do not represent realistic counterfactuals for deforestation
in absence of REDD+ (West et al. 2023). Consequently, the impact of REDD+
projects tends to be severely overstated, at times even to an extent that avoided
deforestation becomes negligible.

The DRC has entered the so-called readiness phase of REDD+ in 2009 and signed
a USD 500 million heavy agreement for the years 2021-2031 to halt and reverse forest
loss and degradation by the end of that period (Kengoum et al. 2024). However,
impeded by the state’s low capacity to engage into long-term planning, the DRC’s
implementation process still suffers from various institutional short-comings, such as
inadequate monitoring, reporting and versification (MRV) systems, low participation
of civil society in the REDD+ process, insufficient integration into broader national
politics and high levels of corruption (Pham et al. 2021; Karsenty and Ongolo 2012;
Kengoum et al. 2020). As Kengoum et al. (2024) note, it is not even clear how
many REDD+ projects currently exist in the DRC, given that an official registry is
missing. They counted a minimum of 45, of which 25 are already discontinued. For
the remaining active projects, benefit-sharing mechanisms are unclear. In 2024, the
Mai-Ndombe project was the only one with an approved benefit-sharing plan in the
form of a PES scheme (Kengoum et al. 2024).

1.6 Methods

1.6.1 Potential outcomes, counterfactuals and the ”credibil-
ity revolution”

Quasi-experimental methods have seen rapidly increasing popularity since the
beginning of the century and became essential equipment in the toolbox of empirical
micro-economics (Goldsmith-Pinkham, n.d.). As research designs such as difference-
in-differences, regression discontinuity, instrumental variable estimation, and lately
also increasingly synthetic control methods already found wide applications in pub-
lic, health, labor and development economics, the field of conservation sciences was
lagging behind for a long time (Baylis et al. 2016; Ferraro and Pattanayak 2006).
Yet, robust impact evaluation of conservation programs or quantification of nega-
tive externalities on biodiversity and deforestation from anthropogenic activities are
essentially requiring counterfactual thinking: How much deforestation was avoided
by policy X? What is the additional amount of deforestation that occurred because
of event Y? The two adjectives highlighted in italics indicate the comparison to a
baseline state in absence of an intervention that helps identifying its effect - a coun-
terfactual that is not observable. The inability to observe the same object in two
different states of the world at the same time has become known as the “foundational
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problem of causal inference” (Holland 1986).
In the notation of Rubin’s potential outcomes framework, the problem can be

formalised as

τ = E[Y |D = 1]− E[Y |D = 0] (1.1)

where D indicates whether an intervention (or treatment) has occurred or not,
Y is some outcome of interest, and τ is the intervention effect. The problem that
motivates quasi-experimental research methods is that the identification of the in-
tervention effect τ in equation 1.1 requires insights on both Y |D = 1 and Y |D = 0 .
One of these two states of the world will inevitably remain unobserved and is called
a counterfactual.

Randomised treatment assignment can help to estimate the counterfactual by
creating statistically identical control and treatment groups, such that τ in equation
1.1 only captures the difference from a change in treatment status. Randomised
experiments are usually costly to implement and not applicable in all research set-
tings, especially in the field of conservation sciences. Quasi-experimental research
methods represent attempts to nevertheless recover τ , given that certain identifica-
tion assumptions are met. Different methods invoke different assumptions, and the
choice of the design requires careful consideration (see Table 1.1).

Only recently have quasi-experimental methods gained in popularity in the appli-
cation to the field of conservation (Jones and Shreedhar 2024; Ferraro and Hanauer
2014). Especially statistical matching has been on the rise for its ease and versatility
in application (Schleicher et al. 2020; Joppa and Pfaff 2010; Andam et al. 2008).
Although in principle better than linear regression analysis for allowing more flexible
functional forms, matching still ultimately relies on the selection of observable char-
acteristics for the identification of treatment effects (Smith and Todd 2005). The
methods used in this thesis largely draw on the rapidly developing field of quasi-
experimental inference methods. By choosing the appropriate research design, they
allow to - at least partially- control for confounding variables that would otherwise
bias treatment effect estimates by design, based on the assumptions one is willing
to make given the research question at hand.

1.6.2 Difference-in-Differences

In Difference-in-Differences (DiD) estimation, the key assumptions for the iden-
tification of τ is that counterfactual outcomes would have developed in parallel had
there not been a treatment intervention. The estimated effect then follows from the
deviation from this counterfactual trend. In the potential outcomes framework from
above and a simple setting with two time period, the Average Treatment Effect on
the Treated (ATT) can be derived from DiD as:

τDiD = (E[Ypost|D = 1]− E[Ypre|D = 1])− (E[Ypost|D = 0]− E[Ypre|D = 0]) (1.2)

τDiD can then be estimated in a Two-Way Fixed-Effects (TWFE) regression.
In case of a staggered treatment roll-out where different groups get treated at

different points in time, the estimation becomes more complicated. Several studies
have shown that the TWFE estimator under heterogeneous treatment timing and
dynamic treatment effects runs into problems with arbitrary weighting and forbidden
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Table 1.1: Quasi-experimental research methods employed in the thesis papers and their
key assumptions.

Research method Key assumptions Reference Thesis paper

Staggered
Difference-in-
Differences

• Parallel
counterfactual
time trends in
the outcome
variable
between
treatment and
control units.

• No
anticipation of
treatment.

Callaway and
Sant’Anna (2021),
Borusyak, Jaravel,
and Spiess (2024),
de Chaisemartin
and D’Haultfœuille
(2020)

Paper I

Geographic regres-
sion discontinuity
design

• No sorting
across
treatment
boundary

• No compound
treatment

Keele and Titiunik
(2015), Dell (2010)

Paper III

Geographic
Difference-in-
Discontinuities
design

• Constant
discontinuities
over time

Grembi, Nannicini,
and Troiano (2019);
Butts (2023)

Paper III

sub-group comparisons (Goodman-Bacon 2021; Chaisemartin and D’Haultfœuille
2020; Borusyak, Jaravel, and Spiess 2024). In response, a number of studies have
also proposed alternatives to TWFE estimation to obtain consistent DiD estimates
even when treatment adoption is heterogeneous (Callaway and Sant’Anna 2021;
Borusyak, Jaravel, and Spiess 2024; Gardner et al. 2024; de Chaisemartin and
D’Haultfœuille 2020; Sun and Abraham 2021).

The approaches of Borusyak, Jaravel, and Spiess (2024) and Gardner et al.
(2024), amongst others, are also referred to as imputation estimators. Both use
all available pre-treatment periods to estimate the counterfactual trend in a simple
OLS regression before imputing the DiD parameter from it. Although it makes them
more efficient than other estimators, it also makes them susceptible to early viola-
tions in parallel trends. Callaway and Sant’Anna (2021) chose a different approach
by computing and averaging individual group-time ATT parameters. Principally,
the parallel trends assumption must only begin to hold starting one period prior to
treatment, although a credible research design typically shows parallel pre-trends
over a longer time period (Roth 2023).

The DiD model in Paper I used the estimator proposed in Callaway and Sant’Anna
(2021) in the main specifications for its ease of implementation, its well-developed
software environment and the flexible conditioning on covariates. The estimator of
Gardner et al. (2024) was further used as a robustness test, to investigate treat-
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ment effect heterogeneities and to implement a spillover-robust estimator suggested
in Butts (2023).

1.6.3 Geographic regression discontinuity

A different quasi-experimental research method is regression discontinuity (RD)
design. RD designs can be employed when an externally determined threshold di-
vides observations into treated and non-treated units based on some observable char-
acteristic, referred to as running variable. The key assumption for the identification
of a treatment effect is that, had treatment not occurred, all observable character-
istics would be continuous across the treatment determining threshold. Given this
assumption holds, the treatment effect can be estimated as the discontinuity in the
outcome of interest along the running variable as treatment switches on:

τRD = lim
ϵ→0

E[Y |X ∈ N+
ϵ (c0)]− lim

ϵ→0
E[Y |X ∈ N−

ϵ (c0)] (1.3)

whereX is called the running variable that indicates the distance to the treatment-
defining cutoff c0. In contrast to τDiD, τRD is a Local Average Treatment Effect
(LATE) as it only reflects the estimate in a close environment around c0.

Paper III in this thesis uses a special case of RD called geographic regression dis-
continuity (GRD) design, where the running variable is a function of an observation’s
location in relation to a spatial treatment-cutoff. As opposed to the conventional
regression discontinuity design, GRD has to take into account that location (on a
map) is determined two-dimensionally, e.g., by longitude and latitude (Keele and
Titiunik 2015). Different methods have been proposed to use location in regression
discontinuity designs. Dell (2010) adopted a semi-parametric approach by splitting
the treatment boundary into different segments and calculating the distance of ob-
servational units to the boundary. Polynomials of latitude and longitude and their
interactions were added as covariates. Keele and Titiunik (2015) proposed a non-
parametric method in which they sampled individual points along the treatment
boundary and estimated local polynomials for each point separately. This approach
was adopted in Paper III, as it is very flexible in aggregating the individual boundary
point estimates into treatment effect parameters of interest, and also less sensitive to
the bandwidth selection (Wuepper and Finger 2022). Finally, Cattaneo, Frandsen,
and Titiunik (2015) have proposed to treat observations in a close window on either
side of the treatment cutoff as quasi-randomised, such that the difference of aver-
age outcomes can recover the LATE. However, this local randomisation approach
requires a large number of observations to be reliable.

1.6.4 Spillovers and leakage

In conservation and land use systems, interventions in one location can have
unintended land use implications on other nearby or distant locations (Meyfroidt et
al. 2020). These effects are known as spillovers and can be positive or negative. In
cases where spillovers counteract the intervention’s effect, they are also referred to
as leakage.

Pfaff and Robalino (2017) identified several channels through which forest con-
servation programs can lead to spillovers. For instance, deforestation actors may
simply shift their activities to land that is not affected by the intervention. On a



15

large scale, this was observed with soy production in the Brazilian Amazon, when
the moratorium displaced soy expansion to other regions (Fehlenberg et al. 2017;
Gasparri and le Poulain de Waroux 2015). Displacement of deforestation may also
occur around PAs, either when land uses are pushed outside PA boundaries, or
when positive feedbacks onto the surroundings exist. This can be the case when
land use restrictions inside PAs also reduce human activities in the surroundings.
Empirically, both positive and negative spillovers of PAs have been identified in
different contexts, with most studies indicating negligible or positive spillovers onto
the surroundings (Ferraro et al. 2013; Fuller et al. 2019).

Besides displacement of deforestation from avoidance, spillovers can also occur
as a result of market dynamics. For instance, when interventions reduce the supply
of agricultural and forest goods, this leads to increases in output prices and may
stimulate production elsewhere (Pfaff and Robalino 2017). Further, reduced demand
for agricultural inputs lowers the cost of agricultural production, with similar effects.
Whereas higher agricultural production may lead to farmland expansion and thus
leakage, lower demand for labor in intervention areas may also lead to out-migration
and consequently positive spillovers on conservation outcomes, at least in the nearby
surroundings (Pfaff and Robalino 2017).

Depending on the research question and the empirical design, spillovers can be a
problem for the identification of treatment effects. Econometric impact evaluation
models usually rely on the stable unit treatment value assumption (SUTVA) for
identification of treatment effects. SUTVA requires that (i) there are no hidden
treatment variants, and (ii) the treatment status of one unit does not have an impact
on the outcome of another unit (Keele 2015). Given that land use change follows
complex spatial processes, especially the second part of the SUTVA assumption
can be problematic in the analysis of deforestation impacts. The GRD model in
Paper III of the thesis, for example, can be sensitive to leakage, given that the
estimated effect is local around the boundary of PAs. If the protection inside PAs
leads to an increase outside, discontinuity estimates no longer reflect only the effect
of protection. However, as the effect of interest is not the avoided deforestation at
the boundaries, but the potential to keep deforestation outside of the PA, coefficients
still give useful insights even in presence of spillovers.

Identification of potential spillovers from an intervention is not well established
in the empirical literature so far (Pfaff and Robalino 2017; Roth et al. 2023). In
the case of PAs, for instance, spillover analysis was usually conducted by drawing
concentric rings around PAs in a predefined distance from the PA and comparing
deforestation within these rings with matched areas further away (Ferraro et al.
2013; Fuller et al. 2019). Based on a similar logic, Butts (n.d.) has established a
more sophisticated spillover-robust DiD estimator as an extension to the staggered
DiD estimator of Gardner et al. (2024). In addition to treatment and control
units, treatment effects in this approach are also estimated for a third group: the
spillover-exposed units. In Paper I of this thesis, the spillover-robust estimator was
used to investigate whether the deforestation impact of mines can be influenced by
the exposure to other nearby mining sites.

Either way, estimation requires an assumption on the spatial extent within which
spillovers can occur. If the area of spillover influence is not clearly defined, or if
the impact is not limited to nearby locations, identifying coupled land use change
dynamics is challenging. This also made it impossible to establish a statement on
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the amount of agricultural deforestation that occurred additional due to mining in
Paper I, as a relocation of farming from other areas to the vicinity of mining sites
is possible.

1.6.5 Hurdle regression model

In addition to quasi-experimental methods used in Papers I and III, Paper II
analyses the mining involvement of households in a hurdle model. Given that the
collected data used for the analysis allows to distinguish households not only into
mining households and non-mining households, but also by their degree of reliance
on mining, the data follows a zero-inflated distribution which can be modelled in
two parts: one that seeks to explain the difference between mining and non-mining
households, and one that compares mining households with different degree of in-
volvement (Cameron & Trivedi, 2013).

In contrast to the previous methods, hurdle model coefficients should be treated
much more carefully in terms of causal interpretation, as they do not control for
confounding factors by design such as the methods shown in Table 1.1. Further, the
direction of causality is not unambiguous, as the decision to mine or not is influenced
by other livelihood activities and outcomes, but also affects them.

1.7 Data

1.7.1 Monitoring forests from space

For economists working in the field of land use and land cover change, the increas-
ing availability of satellite images has opened a whole new universe of opportunities.
Data is often a central limitation to quantitative research, as it is expensive and
time-consuming to collect (Blackman 2013; Mitchell, Rosenqvist, and Mora 2017).
In the analysis of deforestation in the early days, data had to be collected from
ground observations. Although remote sensing has not replaced the necessity for
field observations to assess forest conditions, satellite images enable researchers to
extract a lot of different information, including tree canopy cover and loss thereof,
for virtually any area in the world.

Satellite images store information on reflectance and absorption of light in dif-
ferent spectra of wavelengths. While the human eye can only perceive wavelengths
between 400 and 750 nm, remote sensing analysis exploits a much larger range.
Given that different types of land cover have unique spectral profiles of reflection
across different wavelengths, this information can be used to determine changing
land uses. A difference is made between optical remote sensing that utilises the
reflectance of sunlight, and active remote sensing that is reliant on the reflectance
of transmitted signals. Although the work presented in this thesis does not directly
rely on the interpretation of satellite images, it uses secondary data derived from
remote sensing. Since these datasets have different qualities and employ different
methods to process images, resulting levels and even trends in forest disturbances
can vary substantially (Figure 1.3) This section introduces some of the most fre-
quently used data, their distinct characteristics and discusses potential pitfalls in
their usage.
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Figure 1.3: Forest disturbances in the DRC by data set for the years 2001-2023.

Temporal and spatial resolution of datasets are constrained by the satellite image
catalogues that are used for their creation. Images from the often used and freely
accessible Landsat collection, for instance, date back to 1982, and have a spatial
resolution of ˜30m at the equator (Reiche et al. 2021; Vancutsem et al. 2021). For
more small-scale forest disturbances, more recent data products, e.g. from Sentinel-1
(10m resolution) (Reiche et al. 2021) or planet (5m resolution) (NICFI 2021) can be
used, but do not go as far back in time. Especially for higher resolution images, im-
proved computer capacity and server infrastructures, such as Google Earth Engine,
are immensely helpful to cope with the sometimes heavy computation demands.

Perhaps the most known dataset is the Global Forest Change (GFC) product
(also called the Hansen data) (Hansen et al. 2013). The name is somewhat mis-
leading, since the data in fact does not display forest but tree cover and loss thereof
(see Section 1.2 for a discussion on the difference). The latter is described as a
stand replacement or complete removal of tree cover. The data importantly also
incorporates non-forested land with tree cover, such as plantations, and also cap-
tures disturbances in tree cover that did not necessarily lead to changing land use
and hence deforestation (Pendrill et al. 2022). A separate layer in the GFC data
product with tree cover extent for the year 2000 can be used to apply a minimum
canopy cover thresholds to forest loss events, as done for instance in Paper I of this
thesis. It should also be noted that the GFC has weaknesses in picking up small-
scale disturbances. It misses up to 50% of disturbances smaller than 1-2 hectares,
which is particularly problematic in the DRC were small-scale land use change is
common (Milodowski, Mitchard, and Williams 2017; Reiche et al. 2021; Tyukavina
et al. 2015).

More recently, the Tropical Moist Forest (TMF) data (Vancutsem et al. 2021)
was published with a particular focus on tropical moist forest cover and its distur-
bances. It uses the entire time series of Landsat images (1982-2023) to distinguish
undisturbed forest, degraded forest in case of short-term and low-intensity distur-
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bances in tree cover, and deforestation if permanent land cover conversion was ob-
served. A comparison between TMF and GFC data found that 59% of disturbances
detected in the TMF data were not reported in GFC, especially when disturbance
followed a gradual process (Vancutsem et al. 2021). However, the TMF also has
its limitations. One, for instance, is that it also relies on Landsat’s 30m resolution
which makes it difficult to detect disturbances smaller than 0.09 ha, such as selec-
tive logging (Dupuis et al. 2023; Vancutsem et al. 2021). What is classified as
undisturbed forest may consequently in fact be already degraded from small-scale
human activities that were not picked up from the images.

Given that Landsat images were collected using optical remote sensing reliant on
sunlight reflectance, both GFC and TMF were affected by atmospheric noise in the
images when deriving the data. Especially in tropical rainforests where the evap-
otranspiration from plants is high and intertropical convergence of winds leads to
cloud concentration, cloud-free observations can be more than a year apart, leading
to potential temporal dis-allocation of forest loss events (Reiche et al. 2021; Tyukav-
ina et al. 2018). As opposed to optical remote sensing, active radar remote sensing
has the advantage that it can penetrate through clouds. Sentinel-1 satellite images,
for instance, are available at 10m resolution with high revisiting rate, allowing for
the near real-time detection of even small-scale changes in canopy cover (Reiche et
al. 2021). This is especially important in the Congo Basin, where 80% of forest
disturbances are smaller than 0.5 hectare and cloud cover often impedes optical re-
mote sensing (Reiche et al. 2021). Another application has been the detection of
forest road establishment in the Congo Basin, which requires high resolution data
(Slagter et al. 2024). A downside is that Sentinel-1’s C-band wavelengths of 5.6 cm
can be complex to interpret, given that its backscatter can be influenced by other
factors than tree canopy, e.g. angle, direction or surface moisture (Bae et al. 2019;
Reiche et al. 2021). Additionally, it is important to note that observations are only
going back to January 2019, which can be a problem for many analyses that require
longer time series.

Table 1.2: Commonly used datasets for the analysis of forest cover change and their
distinct characteristics.

Dataset Forest/deforestation definitions Time Resolution

Global forest change
(GFC) (Hansen et al.
2013)

• Quantifies tree cover instead of
forest, and loss thereof as a stand
replacement disturbance or removal
of tree cover.

2001-
2023

30m

Tropical moist for-
est (TMF) (Vancut-
sem et al. 2021)

• Defines undisturbed forest cover as
closed evergreen or semi-evergreen
forest without disturbances over
the entire Landsat catalogue.

• Disturbances are classified as either
degradation events (low intensity
and <2.5 years in duration) or
deforestation events in case of a
permanent forest conversion.

1990-
2023

30m
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Dataset Forest/deforestation definitions Time Resolution

Forets d’Afrique
Central Evaluee
par Teledetection
(FACET) (Potapov
et al. 2012)

• Quantifies tree cover instead of
forest, and loss thereof as a stand
replacement disturbance or removal
of tree cover.

• Forest is land with >30% canopy
cover, and forest cover loss as a
stand replacement.

2000-
2010

60m

GFC primary forest
(Turubanova et al.
2018)

• Primary forest is defined as forest
with no signs of human alteration.

• Primary forest loss is defined as a
stand replacement disturbance in
the forest canopy.

2001-
2023

30m

Forest Resource-
Assessment (FRA)
(FAO 2020)

• Land of more >0.5 hectares with
>10% tree cover of >5m canopy
height is categorised as forest.

• Deforestation is defined as the
conversion of forest for other land
uses.

Every
5 years
since
2000

Country
level as-
sessments

RADD deforestation
alerts (Reiche et al.
2021)

• Forest extent is defined as land
with more than 50% tree cover
according to Hansen et al. (2013)

• Disturbance is the partial or
complete removal of tree cover in a
pixel.

Every
6-12
days
since
January
2019

10m

As the discussion above shows, the choice of the dataset when analysing defor-
estation is non-trivial. All have their own strengths and weaknesses, and importantly
also different in underlying assumptions of what defines a forest and what is entailed
in deforestation (Zalles et al. 2024). The FAO has settled on a definition according
to which land of at least 0.5 hectares with a minimum of 10% tree cover above 5m
classifies as forest (FAO 2023). As such, it also classifies tree plantations as forest,
and explicitly allows for clear cutting activities for timber harvesting in the forest
definition. Deforestation according to the FAO is described as the conversion of
forest for other uses (FAO 2023).

In the densely forested parts of the DRC, the FAO’s definitions of forest and
deforestation can be problematic, since it would allow for up to 90% of tree cover
to be removed without a landscape being counted as deforested (Zalles et al. 2024).
Especially forest fragmentation and small-scale clearing, as often practised in the
rural complex of the DRC, would be overlooked then, severely understating the
actual loss of forest. Therefore, countries tend to apply their own canopy cover
thresholds, ranging between 10% and 60%, that may differ substantially from the
10% threshold proposed by the FAO (Melo et al. 2023).

Usually, datasets are published with accuracy statistic that help assessing the
precision of the data. The accuracy also crucially impacts the precision and even
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the bias of the estimates of subsequent analysis, and is influenced by cloud cover,
atmospheric corrections, training of models and other factors that may lead to non-
classical measurement error (Jain 2020; Meyer and Pebesma 2021). Until now, there
has not been a standardised way to correct standard errors or biased estimates from
satellite-derived data products in econometric analysis (Alix-Garćıa and Millimet
2023; Jain 2020). This is even more complicated by the fact that the accuracy can
vary substantially for different regions, depending on the degree of extrapolation
from the sample data that has been used for training and validating the model
(Meyer and Pebesma 2021). GFC data, for instance, has been found to system-
atically perform better for pine forests than for tropical forests (Alix-Garćıa and
Millimet 2023). Also the procedure of drawing the validation sample can impact
accuracy statistics, as randomly drawn samples may mask group-specific trends
(Simpson’s paradox) (Boser 2024).

A different problem in the use of deforestation data in statistical analysis is
that it is usually coded as a binary, non-repetitive variable. As such, using it as an
outcome variable in econometric models can lead to substantial bias in the estimates,
as Garcia and Heilmayr (2024) have shown for the case of DiD estimation. A simple
solution to avoid this issue can be to aggregate deforestation outcomes over spatial
extents of interest (as done in Paper I), or to resample the raster to a coarser
resolution in order to obtain continuous outcomes (Paper III).

1.7.2 Household surveys and socio-economic data

Also socio-economic information is increasingly derived from remote sensing.
Nightlights, for instance, are commonly used as a proxy for economic activity and
hence prosperity, but are not suited to assess living conditions in contexts of ex-
treme poverty where the main part of the population does not have access to grid
electricity (Gibson et al. 2021). Machine learning models, such as convolutional
neural networks, are becoming better at combining different metrics to derive gran-
ular poverty estimates from satellite images (Sarmadi et al. 2024). Satellite images
can also be supplemented with survey data to achieve better results. For instance,
a recent study trained a machine learning model on geo-referenced livelihood sur-
vey data and then predicted poverty for nearly the entire world (Ton et al. 2024).
Yet, predicting living conditions from space has its limits and cannot replace data
collection in the field. An analysis of livelihoods, as in Paper II, demands data on
the household level that is impossible to detect from satellite images. In the DRC,
household survey data are hardly available. The Afrobarometer has run surveys in
more than 30 African countries but does not cover the DRC, and the last wave of
the Demographic and Health Survey (DHS) in the country was conducted in 2014.
Political instability, low state capacity and insecurity have further impeded census
data collection.

Given this void, fieldwork was conducted in South Kivu during June and July
2022 to analyse livelihoods of artisanal mining households in rural areas at the forest
edge. The data was collected in villages in the territories of Mwenga, Walungu,
Kalehe and Kabare located in the south and south-east of Kahuzi-Biega National
Park, as well as the north-west of Itombwe Nature Reserve.

Kahuzi-Biega National Park is a protected area of IUCN category II. After having
been declared a forest reserve under Belgian rule in 1951, it received the status as a
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national park in 1970 and was declared a World Heritage Site in 1981. During the
establishment and management of the national park, repeated incidences of violent
displacement of indigenous Batwa communities and atrocities against them have
been reported (Barume 2000, Flummerfelt 2022). In 2018, some Batwa communities
have begun to reoccupy parts of the park, causing a spike in deforestation inside
affected park areas (Simpson et al. 2025).

The Itombwe Nature Reserve was first established by ministerial decree in 2006
following the sharp decline of gorillas and elephants in the area during prolonged
conflict (Simpson and Pellegrini 2022). From the start, the nature reserve faced
fierce resistance from local communities for the absence of dialogue in the establish-
ment process, and ultimately resulted in a regazettement following a participatory
mapping process in 2010-2014 (Kujirakwinja et al. 2016). However, also the redrawn
nature reserve boundaries remain disputed among some of the affected communities
(Simpson and Zirhumana 2021).

In total, 278 household interviews were conducted, and 150 focus group inter-
views with artisanal miners. Most villages were small, so that households were
surveyed as they appeared at the village centres. Interviews were conducted in
native languages by co-authors and field assistants, but I was personally present
with a few exceptions where the security situation prohibited it. The questions
mainly concerned livelihood strategies, household asset ownerships and livelihood
outcomes, and the data was analysed in Paper II. Additionally, GPS coordinates
of forest-located mining sites were collected inside Itombwe Nature Reserve with
the help of local hunters, which were intended for usage as training data for the
identification of mining sites for the analysis of Paper I. Overall, impressions greatly
helped to develop a better understanding of the study area, which was essential for
the conceptualisation and contextualisation of all analyses presented in this thesis.

1.8 Synthesis

The chapters that follow in this thesis cover separate, but related topics. The
element connecting all three is the Congo Basin rainforest of the DRC (Figure 1.4).
The first two papers are both concerned with artisanal mining in the eastern part of
the country. Whereas Paper I addresses deforestation impacts of mining activities,
the second uncovers their importance for livelihoods of communities living adjacent
to the forest. Finally, the third chapter analyses the protected area system in the
DRC, its role in preventing deforestation in the Congo Basin rainforest and the
interactions with resource frontiers. This section briefly summarises the research
motivation, methodology and findings of each chapter.
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Figure 1.4: Graphical display of the relationship between the different thesis papers.

1.8.1 Chapter 1: Deforestation trigger effects of artisanal
mining

Artisanal mining is a widespread livelihood activity in forest areas of the eastern
DRC. Yet, studies on drivers of deforestation have not documented any meaningful
impacts of mining on forests (Masolele et al. 2024; Shapiro et al. 2023). Looking
beyond only the area directly cleared for extraction activities, we investigate the
forest loss dynamics that unfold with the start of artisanal mining operations in the
surrounding forests.

The analysis relies on novel data from Masolele et al. (2024) - the first for the
region that does not only indicate when tree cover loss occurred, but also what land
use followed on it. A density-based clustering algorithm was applied on the data
to organise raster cells identified as mining into mining sites, which were then used
as units of observation in a staggered DiD model. Outcomes were calibrated as the
share of forest cover in 2000 that was cleared in the respective year within rings of
increasing distance from the mining site.

Findings show that mineral discoveries triggered deforestation for farming and
settlement expansion within at least 5km distance from the mine. Within this
extent, the additional forest loss was found to be 28 times as high as the loss di-
rectly attributed to the mining surface itself, the most part of it being attributed
to agricultural expansion around mining sites. The study is the first to use quasi-
experimental research methods to document these extensive deforestation trigger
effects of artisanal mining in tropical forests.
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1.8.2 Chapter 2: Livelihoods of artisanal miners in South
Kivu

While the first paper focuses on the forest impacts of artisanal mining in the
eastern DRC, the second chapter shifts the focus on its livelihood implications in
forest-adjacent communities. In the DRC’s context of widespread poverty, environ-
mental degradation and livelihoods can be closely linked. Paper 2 dives into the
integration of artisanal mining into livelihood strategies as a coping mechanism and
as means to reduce risks associated with agricultural practises.

The study adopts a simple analytical model to show the relationships between ex-
pected income, income risk, and livelihood diversification. Derivations suggest that
diversification increases with higher levels of risk aversion, greater risk associated
with farming, and greater expected income of mining relative to farming.

The hypotheses were then tested in a hurdle regression model with data col-
lected during field work in villages surrounding Kahuzi-Biega National Park and
Itombwe Nature Reserve in South Kivu, eastern DRC. Results indicated that house-
holds that diversified into mining experienced lower food insecurity than non-mining
households. With a larger degree of reliance on mining, we further observed that
households involved in mining cultivated less agricultural land.

1.8.3 Chapter 3: Protected areas as a conservation strategy
in the DRC

The third paper is concerned with the protected areas (PAs) in the entire tropi-
cal moist forest biome of the DRC (see Figure 1.2). Historically, PAs have been the
main strategy of forest conservation in the country. Although the first ones were es-
tablished as early as the 19th century and land area under protection is continuously
increasing since then, systematic evaluations of PA effectiveness in withstanding de-
forestation pressure of different kinds are lacking. The study situates PA boundaries
in a context of progressing and emerging deforestation frontier processes to deter-
mine the state of forest cover and the dynamics of forest loss at PA boundaries.

A geographic regression discontinuity design is employed at the boundaries to test
their exposure to - and resilience against - deforestation pressure from the outside.
For more context sensitivity, forest cover and deforestation metrics on either side of
the boundaries are used to construct a typology of protection. Heterogeneity analysis
further investigates how these change under varying strictness of PA management
and in the presence of emerging resource frontiers, specifically in the form of mining
and logging title acquisitions.

The results of the study suggest that the remoteness that has long been keeping
deforestation pressure away from PAs has been fading over the last twenty years,
with 18% of boundaries in the sample having shown deforestation sprawling inside
and another 9% withstanding pressure. Especially less strict PAs, as indicated by
their IUCN classification, were experiencing increasing pressure on forest cover at
their boundaries.
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1.9 Implications and Outlook

Compared to the Amazon and the remaining Asian rainforest regions, research
on the Congo Basin is lagging behind (White et al. 2021). This thesis aims to
contribute to filling this void, addressing different issues and using distinct angles.

From Paper I, a main lesson is that deforestation drivers should not be under-
stood as following isolated processes. In the case of mining, results have shown a
strong link between the discovery of minerals and the occurrence of farmland and
settlement expansion. Without such contextual understanding, the role of mining
for deforestation processes in the eastern DRC has been greatly underestimated.
Similar research on other drivers is needed to improve the understanding of complex
land use change dynamics, and to move from an isolated understanding of the direct
causes of land use change to their interdependence and to the causal mechanisms
behind them. Such knowledge is crucially needed to address the complex challenge
of halting forest loss.

Better knowledge on the causal mechanisms of forest change also require insights
on how deforestation processes are embedded in the socio-economic environment,
as Paper II showed. Especially in a context of widespread poverty, like the DRC,
forest conservation should not come at the expense of local communities’ livelihoods.
In the case of mining, results presented in this thesis have highlighted its role in
complementing, but also substituting farming in conditions where agriculture has
become increasingly unviable and alternative sources of income are rare.

Given that much of the deforestation is result of poverty and population growth,
the context for conservation policy in the DRC is complex. The government’s weak
capacity to pursue long-term strategies to halt deforestation poses further limitations
on the available options (Karsenty and Ongolo 2012). A perspective that takes
causal mechanisms leading to deforestation into account rather than one resorting
to one-size-fits-all responds is essential for lasting and effective solutions. PAs, as
they have been implemented in the past, could not live up to this standard as
they struggled to reconcile the needs of local communities with that of conserving
forest (Inogwabini 2014). A stronger focus on livelihoods in forest conservation
is necessary to identify equitable anti-deforestation strategies, and can become a
leverage point for change and part of the solution. Ferraro and Simorangkir (2020),
for instance, found that a conditional cash transfer program aimed at reducing
poverty in Indonesia simultaneously lead to a 30% reduction in deforestation, as
it reduced households’ reliance on clearing forest. A similar program in Ethiopia
was found to increase tree cover by 3.8% (Hirvonen et al. 2022). These examples
show that it is possible to improve living conditions while at the same time reducing
deforestation, although different contexts have produced different outcomes (Alix-
Garcia et al. 2013).

The recent emergence of community forests in the DRC may provide opportu-
nities for win-win scenarios, as they give communities the right to exploit forest
resources for subsistence and commercial purposes in sustainable ways (Lescuyer et
al. 2019). With the first forests being established in 2017, the impact of commu-
nity forests on livelihoods and conservation is yet to be seen. In other countries
where community forests are already implemented longer, effects on deforestation
are mixed, but overall positive (Porter-Bolland et al. 2012). Useful lessons can
be learned from neighbouring Cameroon, where more than 20 years of community
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forestry have not yielded the desired results (Kenfack Essougong, Foundjem-Tita,
and Minang 2019). Among others, issues were identified in ensuring equitable access
to the forest for all community members, in preventing elite capture, and in provid-
ing the necessary support structures to establish and manage the concessions. This
is also largely in line with generally identified conditions for successful community
forestry across countries (Baynes et al. 2015).

In an early evaluation of local perceptions towards community forests in three lo-
cations of the DRC, Lucungu et al. (2022) found that only few respondents reported
economic gains after the community forest establishment compared to before. How-
ever, most people thought it helped them to secure their forest against exploitation
by other actors. Thus, if property rights are ensured, the governance within com-
munity forests well defined, and necessary support structures in place, community
forests have the potential to improve the socio-economic situation of communities
while preventing the over-exploitation of forest resources.
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Kengoum, Félicien, Pham Thu Thuy, Moira Moeliono, Bimo Dwisatrio, and Denis
Jean Sonwa. 2020. The Context of REDD+ in the Democratic Republic of
Congo: Drivers, Agents and Institutions, 2nd Edition. Center for International
Forestry Research (CIFOR). https://doi.org/10.17528/cifor/007793.

Kilosho Buraye, J., Stoop, N., & Verpoorten, M. (2017). Defusing the social mine-
field of gold sites in kamituga, south kivu. From legal pluralism to the re-making
of institutions? Resources Policy, 53, 356–368. https://doi.org/10.1016/j.

resourpol.2017.07.009

Kleinschroth, Fritz, Nadine Laporte, William F. Laurance, Scott J. Goetz, and
Jaboury Ghazoul. 2019. “Road Expansion and Persistence in Forests of the
Congo Basin.” Nature Sustainability 2 (7): 628–34. https://doi.org/10.

1038/s41893-019-0310-6.

https://doi.org/10.1111/j.1749-6632.2009.05162.x
https://doi.org/10.1111/j.1749-6632.2009.05162.x
https://doi.org/10.1016/j.forpol.2011.05.006
https://doi.org/10.1093/pan/mpv007
https://doi.org/10.1093/pan/mpv007
https://doi.org/10.1093/pan/mpu014
https://doi.org/10.1093/pan/mpu014
https://doi.org/10.1016/j.resourpol.2013.12.003
https://doi.org/10.1016/j.resourpol.2013.12.003
https://doi.org/10.5751/ES-10656-240109
https://doi.org/10.5751/ES-10656-240109
https://doi.org/10.17528/cifor/007793
https://doi.org/10.1016/j.resourpol.2017.07.009
https://doi.org/10.1016/j.resourpol.2017.07.009
https://doi.org/10.1038/s41893-019-0310-6
https://doi.org/10.1038/s41893-019-0310-6


33

Kujirakwinja, D., A. J. Plumptre, A. Twendilonge, G. Mitamba, L. Mubalama, J.
D. D. Wasso, O. Kisumbu, et al. 2019. “Establishing the Itombwe Natural
Reserve: Science, Participatory Consultations and Zoning.” Oryx 53 (1): 49–57.
https://doi.org/10.1017/S0030605317001478.

Ladewig, Malte, Arild Angelsen, Robert N. Masolele, and Colas Chervier. 2024.
“Deforestation triggered by artisanal mining in eastern Democratic Republic
of the Congo” Nature Sustainability 7 (9): 1452–1460. https://doi.org/10.

1038/s41893-024-01421-8.

Lambin, Eric F., and Patrick Meyfroidt. 2011. “Global Land Use Change, Eco-
nomic Globalization, and the Looming Land Scarcity.” Proceedings of the Na-
tional Academy of Sciences 108 (9): 3465–72. https://doi.org/10.1073/

pnas.1100480108.

Lapola, David M., Patricia Pinho, Jos Barlow, Luiz E. O. C. Aragão, Erika Berenguer,
Rachel Carmenta, Hannah M. Liddy, et al. 2023. “The Drivers and Impacts of
Amazon Forest Degradation.” Science 379 (6630): eabp8622. https://doi.

org/10.1126/science.abp8622.

Lee, David S, Thomas Lemieux, Diane Alexander, Emily Buchsbaum, Elizabeth
Debraggio, Enkeleda Gjeci, Ashley Hodgson, Yan Lau, Pauline Leung, and Xi-
aotong Niu. 2009. “Regression Discontinuity Designs in Economics.” NBER
Working Paper Series 14723. http://www.nber.org/papers/w14723.

Lescuyer, G., P. O. Cerutti, P. Tshimpanga, F. Biloko, B. Adebu-Abdala, R. Tsanga,
R. I. Yembe-Yembe, and E. Essiane-Mendoula. 2014. “The Domestic Market
for Small-Scale Chainsaw Milling in the Democratic Republic of Congo: Present
Situation, Opportunities and Challenges.” https://doi.org/10.17528/cifor/

005040.

Lescuyer, Guillaume, Tito Muhindo Kakundika, Ignace Muganguzi Lubala, Isaac
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”Some forest mining towns grew up so fast that their existence seems
impossible; for example, the large town of Bisie, some 45 kilometers
into the Walikale rain forest, did not exist before 2002, when trappers
found cassiterite there. As of my last visit in 2009, it had as many as
15,000 people. Bisie is connected to other towns only by a treacherous
walking trail, but the town is more cosmopolitan than road-connected
administrative towns; traders (who carry an average of 50 kilos on their
heads on the two-day walk through the forest) have even managed to bring
in satellite dishes.”

(Smith, 2011)
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Abstract The discovery of valuable minerals in the mineral-abundant eastern

DR Congo can stimulate extensive migration into remote areas of the Congo

Basin rainforest. Despite the widespread practice of artisanal mining, its

role in the ongoing deforestation has not received adequate attention. Using

Difference-in-Differences estimation, we show that artisanal mining triggers

deforestation at least 5 km from mining sites. Within this distance, the onset

of mining causes an additional 4 percentage points of forest loss after 10 years.

In total, the indirect deforestation caused by mining through the expansion of

other land uses is 28 times larger than the forest area directly cleared for min-

ing. Most of this loss is caused by increased farming around mines, followed

by forest cleared for settlements. These indirect effects reveal a much larger

role played by artisanal mining in deforestation dynamics than previously as-

sumed and explain at least 6.6% of the total deforestation in the eastern DR

Congo.

2.1 Introduction

With 107 million hectares (ha) of rainforest, the Democratic Republic of Congo
(DRC) is home to about 60 percent of the Congo Basin, the second-largest rainforest
in the world (Mayaux et al. 2013). Despite widespread poverty in the country, it
is among the richest in valuable minerals, particularly in the east and south of the
country (Edwards et al. 2014). This study focuses on the eastern provinces Haut-
Uele, Ituri, North-Kivu, South-Kivu and Maniema (Figure 2.1). Together, they span
18% of the country and comprise an area larger than Germany. The region is among
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the most biodiverse on the continent (Plumptre et al. 2007), while being known for
its richness in gold and “3T” minerals: tantalum and tungsten, which are both
classified as critical by the EU for their use in the production of electronic devices
such as smartphones and laptops, as well as tin (IPIS 2023; European Commission
2023).

Forest conversion within distance rings of 1-

km width around mines

d

Mining expanse per site

Study area with identified mining sites indicated ca

Forest conversion within withn 5-km 

buffers around mines

b

Figure 2.1: Left: map of the study area and the location of identified mining sites by
year of establishment. Right: data processing steps. First, mining pixels are organised into
clusters. The first incidence of mining per cluster is then used to draw buffers around it,
either (i) as concentric rings of 1 km width of increasing distance, or (ii) as 5-km buffers.
Pixels displayed in red scales indicate forest loss from small-scale agriculture, those in blue
scales show settlement expansion.

The minerals are predominantly extracted on artisanal and small-scale mining
(ASM) sites. The International Peace Information Service (IPIS) currently counts
2,700 of these mines across the five eastern provinces and 332,000 associated miners
(IPIS 2023). While artisanal mining still largely relies on manual hand-held tools
for extraction and remains a labour-intense activity, the sector also sees an increas-
ing adoption of small efficiency-enhancing machinery (Kabunga and Geenen 2022;
Matthysen, Muller, and Bulakali 2022). Operations can occur in different forms de-
pending on the location and type of deposits, and include alluvial extraction along
rivers, dredging of riverbeds, open pit mining following the removal of surface layers,
and underground mining in tunnel systems (Geenen and Bikubanya 2024).

Social and political tensions in the eastern DRC have a long history (Büscher
and Mathys 2019), and the rise of artisanal mining over the past decades has been
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entrenched with the ongoing armed conflict. Mining as a livelihood activity was
spurred by the deterioration of rural livelihoods during decades of instability (Kelly
2014; Cox 2012), but resource revenues also contributed to the proliferation of war-
fare (Vogel 2018; Geenen 2012). Efforts to reduce interference of armed groups in
the ASM sector and extend government control were mostly unsuccessful, as the
state remains fragmented and incapable of providing even basic services in many
regions (Vogel 2018; Büscher 2018; Kilosho Buraye, Stoop, and Verpoorten 2017;
Geenen and Bikubanya 2024; Geenen 2012).

Mining operations often take place in forest areas and pose several problems
to the surrounding forest ecosystems (Luckeneder et al. 2021; Sonter, Ali, and
Watson 2018): extensive hunting around mining sites threatens biodiversity (Spira
et al. 2019; Plumptre et al. 2016); the use of mercury and increasingly also cyanide
impacts human health and the environment (Nkuba, Bervoets, and Geenen 2019;
Kabunga and Geenen 2022); and sediment load in rivers affects water quality and
aquatic life (Dethier et al. 2023). This study focuses on the impacts artisanal mining
has on deforestation dynamics in the eastern part of the DRC, where deforestation
is defined as the removal of forest for other land uses.

Deforestation in the DRC is dominated by small-scale rotational agriculture
(Tyukavina et al. 2018; Shapiro et al. 2023). It mostly occurs along roads in a
pattern that has been labelled the rural complex, consisting of mosaics of produc-
tive agricultural plots, fallows, regrowing secondary forest patches and to a minor
extent settlements (Molinario et al. 2017). Under the pressure of a growing pop-
ulation that is expected to triple by the end of the century (Vollset et al. 2020)
and related issues of land scarcity, declining soil fertility (Cox 2012) and food inse-
curity, the increasing need for land leads to the expansion of rural complexes into
surrounding forests (Molinario et al. 2020).

Whereas this expansion drives deforestation at the forest edges, deforestation of
core forest requires stronger incentives due to its inaccessibility (Shapiro et al. 2023;
Molinario et al. 2020). Industrial logging, large-scale mining and agricultural plan-
tations have the potential to slice open core forests and provide access through road
construction but are largely absent in the eastern DRC (Kleinschroth et al. 2019;
Ferrari and Cerutti 2023). Artisanal mining activities do not rely on transport in-
frastructure but can induce human activities in remote forests given the high income
prospects and exogenously determined location of deposits (Bryceson and Geenen
2016; Shapiro et al. 2023; Smith 2011; Matthysen, Muller, and Bulakali 2022).
In mineral rushes, newly discovered minerals can rapidly attract large numbers of
people, initially living in improvised tarpaulin settlements that potentially develop
into booming towns with a diversified portfolio of economic activities (Bryceson and
Geenen 2016; Büscher 2018; Smith 2011). In this way, the discovery of valuable
minerals in forests acts as a deforestation trigger (Meyfroidt 2016) in attracting not
only mining activities, but also farmland and settlement expansion to provide food
and shelter to miners and their families.

In contrast to industrial mining’s impacts on deforestation (Giljum et al. 2022;
Sonter et al. 2017), difficulties to identify ASM from satellite images (Tyukavina et
al. 2018; Caballero Espejo et al. 2018) and to account for the dynamics unfolding
around these mines have impeded their quantitative impact assessment. Studies
from other countries have reported substantial regional impacts on direct forest loss,
including the south-west of Ghana (Barenblitt et al. 2021), the Peruvian region
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of Madre de Dios (Asner and Tupayachi 2017) and the Brazilian Legal Amazon
(Siqueira-Gay and Sánchez 2021). However, none of them have assessed indirect
impacts. For the DRC, we only found three studies that have attempted to quantify
forest loss from mining. The first, a pan-tropical study focused on large-scale mining
operations, found only minor impacts for the DRC (Giljum et al. 2022). The second
study investigated direct drivers of Congo Basin deforestation between 2000 and
2014 but found no loss to mining in the DRC, not explicitly distinguishing between
artisanal and industrial mining (Tyukavina et al. 2018). The third, most recent
study estimated deforestation and forest degradation in the Congo Basin between
2015 and 2020 for different land use archetypes, of which artisanal mining was found
to be the least important (Shapiro et al. 2023). However, the archetype labelled
artisanal mining was defined such that it would neither capture the interrelation
with multiple other land uses, nor the spatio-temporal dynamics by which mining
sites establish.

Using a Difference-in-Differences (DiD) model (Callaway and Sant’Anna 2021),
we quantitatively assessed the deforestation dynamics that accompany artisanal min-
ing operations. We identified 255 forest-located artisanal mines from temporally ex-
plicit data on post-forest land use between 2001 and 2020 (Masolele et al. 2024) and
showed that forest clearing for the actual mining area is dwarfed by the cumulative
impact of other, triggered land uses. Our findings contribute to a more differenti-
ated understanding of deforestation drivers in the eastern DRC and highlight the
importance of accounting for the indirect contribution of mining to deforestation to
uncover its full forest loss impacts. Given the ongoing deforestation in the DRC
(Vancutsem et al. 2021), such understanding is greatly needed in the effort to slow
down and halt forest loss.

2.2 Results

The identification of the true causal effect of mining on the surrounding forests re-
quires the comparison of the same area with and without mining activities, which is a
counterfactual and not hence observable. We used heterogeneity-robust Difference-
in-Differences (DiD) estimation (Callaway and Sant’Anna 2021) to estimate this
counterfactual, where mines established at a later point in time served as control
units for already established mines. The effect was estimated by comparing defor-
estation trends of mining sites and controls before and after the onset of mining.
Additional specifications with randomly selected and covariate-conditioned control
units were conducted as robustness checks and are reported in the Supplementary
Information Figure 3.1

The validity of the DiD design relies on the assumption of similar average defor-
estation trends between control units and mines had mining not occurred. For each
model specification, we provided evidence in support of this assumption by estimat-
ing pseudo-effects for the years before the first mining incidence was recorded (see
Methods section). The outcome of interest was the share of forest present in 2000
that was deforested by a given year, calculated over (i) 1-km wide rings in increasing
distance from mines, and (ii) a fixed 5 km buffer around mines (Figure 2.1). Since
the surface area covered by the 1-km concentric rings increases with their distance
to mines, the effects were calculated scale-neutral as percentage points (pp) of forest
cover in 2000 that got converted to other land uses.
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2.2.1 Forest loss around mines

The deforestation estimates showed continuous yet decreasing additional defor-
estation as time passed and distance from the mines increased (Figure 2.2). Overall,
increased forest-clearing effects were statistically significant up to a distance of 5
km for most tested time periods after mining started. As expected, the effects were
largest close to mining sites. Within a 1 km distance, an average additional 9.6
percentage points (pp) of forest was cleared within 10 years after mining started.
Within the 4-5 km distance ring, an additional 2.7 pp was deforested after 10 years.
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Figure 2.2: Spatio-temporal estimates of impact on cumulative deforestation since 2001,
as percentage points of additional forest cover lost, over time since mining detection. For
every additional kilometre from the mine, a new ring is estimated. Panel a displays the
coefficients of deforestation for all land uses, b for small-scale agriculture and c for settle-
ment expansion only. Bootstrapped standard errors are clustered at the mine level. Points
indicate ATT estimates following the DiD estimator proposed in Callaway & Sant’Anna
(2021) and errorbars refer to 95% confidence bands. n = 255 mines.

Additional forest loss around mines kept growing over the examined 10-year
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period, but also expanded over time. While deforestation close to mines showed an
immediate increase with the start of mining (e.g., 2.6 pp within 1 km distance in the
first year) and a continued growth afterwards, the effects further away set in more
gradually, e.g., 0.5 pp in 4-5 km distance.

Given that the estimates for different distance rings from mines yielded mostly
statistically significant results up to 5 km, we drew 5-km buffers around mines
and estimated the overall forest loss inside (Figure 2.3). Within these buffers, we
found that 4 pp additional forest was cleared within 10 years after a mine was
first identified. Alternative estimation results with randomly selected control sites
and under inclusion of covariates are reported in Figure 3.1 in the Supplementary
Information as robustness tests, overall confirming the findings.

2.2.2 Post-forest land uses triggered by mining

We disaggregated the deforestation effects into different direct drivers of land
cover change to untangle the trigger dynamics of mining. Small-scale farming kept
on expanding over the years following the first mining incidence (Figure 2.2b). The
farming-driven deforestation triggered by mining was most extensive immediately
after mining started, but kept on growing over time and distance from the mine.
Estimates were statistically significant up to a distance of 5 km, where an additional
2 pp of forest was cleared for farming after 10 years. Forest loss driven by settlement
expansion showed similarly strong deforestation effects within 1 km of the mines,
but estimates were less precise and faded sooner further from mines, with mostly
statistically insignificant results beyond a 2-km distance (Figure 2.2c).
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Figure 2.3: Estimates of impact on cumulative deforestation since 2001 as percentage
points of additional forest cover lost, within a 5-km radius around mines, over time since
treatment for various land uses following deforestation. The category Other aggregates
all 15 land use classes reported in Masolele et al. (2024), All refers to the sum of all
post-forest land uses. Bootstrapped standard errors are clustered at the mine level. Points
indicate ATT estimates following the DiD estimator proposed in Callaway & Sant’Anna
(2021) and errorbars refer to 95% confidence bands. n=255 mines.

With respect to the 5-km buffers around mines, disaggregated results for the
different land use categories showed that small-scale agriculture and settlement ex-
pansion increased substantially when mining commenced: within 10 years, trigger
effects led to the additional clearance of 2.8 pp of forest for farming and 1.2 pp for
settlement expansion (Figure 2.3). When estimating this effect for the hectares of
deforested area instead of the share of cleared forest, we found that every hectare of
forest loss due to mining caused another 28.4 ha loss from other land uses within 10
years, of which 21.8 ha are associated with agriculture and 4.73 ha with settlement
expansion.

2.2.3 Trigger intensity heterogeneity

The occurrence and magnitude of deforestation triggers are determined by pre-
disposing factors that activate them (Meyfroidt 2016). We tested how deforestation
trigger effects varied with a number of geographic factors of a mining location. To
do so, we used the first estimation step of recently developed imputation-based
DiD estimators (see Methods) to impute the benchmark deforestation from not-yet-
established mines, and then compared the change in deviation from this benchmark
along the gradient of values for different covariates (Figure 2.4; see Methods for
details). The tested covariates included the travel time to cities (Weiss et al. 2018),
the agricultural suitability of a location(Fischer et al. 2021), the proximity to rivers,
the amount of forest in the surroundings proxied through the share of dense tree
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cover (>60%) in 2000 (Hansen et al. 2013), and the number of conflict events since
the start mining (Raleigh et al. 2010).

The trigger effects were higher in conditions favourable to human settlement,
such as accessibility (Figure 2.4a and 2.4b), agricultural suitability (Figure 2.4c)
and river proximity (Figure 4d). Whereas trigger effects from settlement expansion
were limited to more accessible locations with better agricultural growing conditions
(suitability score >8,500) and within 2 km from rivers, additional forest loss from
farming was relatively constant along different covariate gradients.
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Figure 2.4: Deforestation heterogeneity in response to the establishment of a mine, cal-
culated as the deviation from the counterfactual baseline as estimated from the first stage
regression of Gardner (2022) within 5km buffers (see Methods). The displayed variables are
a travel time to cities (Weiss et al. 2018) (n=143 mines), b distance to main road (Open-
StreetMap) (n=150 mines), c agricultural suitability, based on FAO global agro-ecological
zones (Fischer et al. 2021; higher scores imply better suitability) (n=144 mines), d dis-
tance to rivers (OpenStreetMap) (n=138 mines), (e) share of pixels with ¿60% tree cover
(Hansen et al. 2013) (n=129 mines), f conflict incidences since the beginning of minning,
from Raleigh et al. (2010) (n=124 mines). Bootstrapped confidence levels displayed at the
95% level.

Effects also varied with the amount of dense forest in the surroundings (Figure
2.4e). Mining sites with initially lower forest cover were experiencing relatively
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higher settlement expansion, potentially due to expansion of existing rural complex
formations. Mines in more dense forest areas experienced farming-dominated trigger
effects.

The relationship between conflict events and mining-related forest loss was in-
creasing (Figure 2.4e), although we cannot say whether this can be explained by
mining causing more militia activity or by mining becoming a survival strategy in
response to conflict-related hardship (Büscher 2018; Kelly 2014). It is also likely
that mines with larger revenue prospects are attracting both people and militia,
thereby increasing not only deforestation but also conflict events.

2.3 Discussion

Artisanal mining is a widespread livelihood activity in forest landscapes of east-
ern DRC. However, the full extent of its impacts on the deforestation of the Congo
Basin rainforest in the area remains understudied at this point. Using post-forest
land use data (Masolele et al. 2024) and quasi-experimental research methods, our
analysis shows how mineral discovery can act as a deforestation trigger. In line with
previous studies, we found that the forest area directly converted to mining use is
small when compared to other land uses (Shapiro et al. 2023; Tyukavina et al.
2018). However, the quantification of the indirect effect from other land uses reveals
28.4 times as much loss as from the direct effect, predominantly through increasing
agricultural activity and to a lesser degree settlement expansion in the proximity of
mines.

Of the total 924,502 ha of dense forest converted to other land uses in the five
eastern provinces of the DRC between 2002 and 2018, 6.6% were directly or indirectly
caused by new mines in the same period, not counting impacts beyond 5 km from
mining sites. Of the total 752,077 ha cleared for farming in the study area, 6.8% was
additionally triggered within this 5-km distance. For the 23,299 ha of settlement
expansion into forest, it was even 23.9% that was triggered by mining. These figures
are conservative, given that dynamics likely reach further than 5 km, and would be
even larger if older mines were also included, as mining settlements can turn into
booming towns and enter urbanisation processes over time (Bryceson and Geenen
2016; Büscher and Mathys 2019).

Some limitations of the study are worth noting. First, our analysis cannot ac-
count for spatial leakage of deforestation. Negative leakage could occur if more forest
conversion to farmland around mines reduces agricultural expansion elsewhere. We
assume leakage to be small, given that mining is more likely than other land uses
to occur in remote forest areas (Shapiro et al. 2023). Another leakage effect in the
opposite direction could be caused by out-migration once environmental pollution
from mining adversely affects livelihoods and ecosystem services (Nkuba, Bervoets,
and Geenen 2019). However, controlling for any such leakage effects is beyond the
scope of this analysis and does not rebut our findings that artisanal mining acts as
an underlying driver of deforestation.

Second, the data of Masolele et al. (2024) captures mining incidents that have
caused tree cover loss between the years 2001 and 2020 as indicated in Hansen et
al. (2013) (see Data section). We therefore cannot rule out that some of the identified
“new” mining sites are only expansions of old ones from before 2000, or that mining
has started on non-forested pixels and therefore does not appear as tree cover loss
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in the dataset. Further, the forest loss data can be temporarily misallocated and
underestimate disturbances of less than 2 ha (Milodowski, Mitchard, and Williams
2017). However, the reliance on Hansen et al. (2013) data improves the tractability
in the identification of deforestation cause and the impressive accuracy statistics
stated in Masolele et al. (2024) particularly for mining make the data a suitable
choice for our analysis.

Further research is needed to better understand the predisposing factors that
facilitate the deforestation triggering of mining. Our analysis suggests that the
location of minerals could play an important role. Whereas the literature on de-
forestation drivers typically assumes that accessibility and farming conditions are
associated with higher land rents and thus deforestation pressure (Angelsen 2010;
Busch and Ferretti-Gallon 2017), our results imply that farming expansion around
mines also occurs in less accessible areas. This is not surprising given that insecurity
in east DRC has led to a dissolution of local markets for selling agricultural produce
and to predominantly subsistence-oriented farming (Cox 2012; Kelly 2014). Further,
food around mining sites is initially often externally supplied from nearby villages,
which is challenging to uphold in more remote areas and creates the need to grow
food close to the mines (Bryceson and Geenen 2016; Smith 2011).

The proximity to roads and rivers, both associated with higher settlement ex-
pansion, also characteristise rural complex mosaics of shifting cultivation and set-
tlements (Molinario et al. 2017). Mining activities increase population pressures
in these land use systems and lead to their expansion into the forest. However,
the results also showed that agriculture-related trigger effects may set in in dense
forest areas away from pre-existing rural complexes, underpinning the potential of
mines to open previously undisturbed core forests. In this way, artisanal mining can
contribute to forest fragmentation with lasting impacts on the integrity of ecosys-
tems and biodiversity in an area known for its richness in endemic and endangered
species, such as the Grauer’s Gorilla (Plumptre et al. 2007; Plumptre et al. 2016;
Watson et al. 2018; Lhoest et al. 2020).

The relationship between mining, conflict and deforestation is complex. Decades
of conflict have led to a retreat of timber, mining and agricultural industry, but have
also pushed people into the forest in search of shelter and resources and conditioned
the rise of artisanal mining (Nackoney et al. 2014; Draulans and Krunkelsven 2002;
Kilosho Buraye, Stoop, and Verpoorten 2017). Conflict-related displacement has
been a significant force behind internal migration in eastern DRC, where especially
less remote mining sites have been identified as safe havens for the large number
of landless displaced people who seek the livelihood opportunities provided in and
around mines (Büscher and Mathys 2019; Kelly 2014).

Simultaneously addressing the problems of hazardous working conditions, armed
actors’ involvement and adverse environmental impacts inherent to the artisanal
mining sector presents itself as a complex challenge that defies an easy solution.
Previous attempts to regulate the sector did not have the desired effects. National
laws to organise miners into cooperatives that operate in designated artisanal ex-
traction zones have only been implemented partially, and the cooperatives that exist
have turned into vehicles of elite capture rather than protection of workers’ rights
(Iguma Wakenge et al. 2021; Haan and Geenen 2016; Matthysen, Muller, and Bu-
lakali 2022). Transnationally, the mineral traceability scheme iTSCi was initiated
in 2012 in an attempt to ensure conflict-free tin supply chains and includes an in-



52 Paper I

creasing number of mines (Iguma Wakenge et al. 2021). However, especially in less
accessible areas, interference and control by armed groups are still common, and
reports of a fraudulent system with a disproportional burden on the miners prevail
(Matthysen, Muller, and Bulakali 2022; Vogel 2018).

Mining emerged as a poverty-driven consequence of deteriorating rural liveli-
hoods of millions of people, not only in DRC but throughout the entire Sub-Saharan
Africa (Kelly 2014; Hilson and Garforth 2012). As long as viable income alternatives
remain absent and the global demand for critical minerals persists, it will continue
to play this crucial role in supporting rural livelihoods. Solutions must therefore
focus on both, short-term relief to prevent the forms most problematic to people
and forest, and long-term strategies to improve rural living conditions in order to
conserve the planet’s second-largest rainforest without failing the people who live
inside and around it.

2.4 Methods

2.4.1 Data

We used data on post-forest land use in 30x30 metre resolution (Masolele et
al. 2024). The data was constructed by first locating tree cover loss between the
years 2001 and 2020 as indicated in Global Forest Change (GFC) data (Hansen et
al. 2013). Afterwards, high-resolution Planet-NICFI images (NICFI 2021) with a
4.77m spatial resolution were utilised in an attention U-Net deep learning network
architecture to classify different forms of post-forest land uses, including mining,
farming and settlement expansion. Land use classification relied on images from
2022, which implies that potential intermediate land uses between a deforestation
event and the year 2022 are not captured in the data, but also that the identified
forest conversion is permanent.

The data is particularly useful for our analysis of artisanal mining in the eastern
DRC for several reasons. The temporal allocation of the initial disturbance event
prior to identified land uses enabled us to track changes over the years, which is
crucial to analyse the dynamics around mining sites. Further, the application of
high resolution Planet-NICFI images enabled the identification of even small-scale
land uses that are common in the region, and the model was specifically trained with
geolocated mining sites from eastern DRC (IPIS 2023). The product has 98% users’
accuracy and 82% producers’ accuracy for mining pixels (85% and 84%, respectively,
across all land use categories; see Masolele et al. (2024) for full accuracy statistics),
which gives us high confidence that the mining pixels in the data indeed correspond
to mines.

GFC data detects stand-replacement or disturbance of tree cover, which is not
necessarily deforestation as it also counts loss on non-forested land with tree cover
(Pendrill et al. 2022). Consistent with previous studies for the region (Molinario et
al. 2017; Shapiro et al. 2023; Potapov et al. 2012), we therefore only considered
forest conversion on pixels that had a minimum tree canopy cover of 60% in the
year 2000. To test the sensitivity of the findings to the definition of forest and
deforestation, we compared the results for different datasets, reported in Figure 3.2
in the Supplementary Information.

As the unit of analysis is different mining sites, it was necessary to group the
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mining pixels from the post-forest land use data into clusters (Figure 2.1). When
minerals are discovered and a mine established, the expansion of excavations into
the immediate surroundings can occur over time. In order not to conflate such ex-
pansion effects with new mining incidences, we performed density-based clustering.
Compared to other clustering algorithms, density-based clustering does not require a
predetermined number of clusters and it allows clusters to grow into arbitrary shapes
(Sander 2010), which is important given that mining sites often expand along river-
banks. A mining pixel was classified as a member of a cluster if it was within a 1km
distance of at least one other member pixel (alternative distance threshold specifi-
cations in Table 3.2 in the Supplementary Information). Each of the pixel clusters
represents a mining site, with the earliest identified pixel determining the starting
year.

The analysis focused on the impacts of mining on forests. We therefore used
GFC data to filter for mines with at least 30% densely forested pixels characterised
by a minimum of 60% tree cover in 2000 inside a 5-km buffer. Furthermore, we
excluded any industrial mines in our sample by overlaying and visually inspecting
the identified mines with mining polygons from other data (Maus et al. 2022). After
dropping 64 mines located outside the forest, as defined above, and two industrial
mines, a sample of 255 artisanal mines remained.

The outcome variables were defined as forest loss events over varying geographic
extents between the years 2001 and 2020 (Figure 2.1). Aggregating deforestation
over polygons has the advantage of preventing biases that can occur in pixel-level
analysis (Garcia and Heilmayr 2024). First, the spatio-temporal dynamics of forest
loss in proximity to mines were examined by drawing a set of concentric rings of 1
km width in increasing distance to the first mining incidence within each cluster.
For each ring, we calculated the share of forest pixels in 2000 that is lost by a given
year.

Second, a buffer of 5 km width around mines was used to analyse the extent
of forest loss in the surrounding area, where 5 km presented itself as a suitable
buffer width in the results for the different distance rings from the first part of
the analysis. Within these 5 km buffers, the calculated outcomes encompassed the
cumulative hectares of forest loss in addition to the share of forest cleared, to get
an estimate of the gross area that was deforested.

2.4.2 Difference-in-Difference model

The impact of the establishment of a mining site on the surrounding forest cover
was estimated in a difference-in-differences (DiD) framework. To exploit the tempo-
ral dimension in the data, the model adopted a staggered design, where the treat-
ment was defined as the start of mining activities, i.e., the earliest year for which
mining pixels were identified in a mining location. In the main specifications, we use
not-yet-treated instead of never-treated mining sites. Not-yet-treated controls have
the advantage of providing a more comparable counterfactual if the never-treated
controls are likely to differ from the treated units in non-random ways (de Chaise-
martin and D’Haultfœuille 2022). We elaborate on this choice in the Supplementary
Information, where we also report DiD results conditional on covariates for both not-
yet-treated and never-treated controls.

The recent literature shows that the conventional two-way fixed effects (TWFE)
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estimator may produce biased results in settings with varying treatment timing and
treatment effect heterogeneity due to the way that it places weights on the different
sub-group comparisons (Chaisemartin and D’Haultfœuille 2020; Sun and Abraham
2021). Therefore, for our main specifications, we used the estimator proposed by
Callaway & Sant’Anna (2022) (henceforth CSA).

The estimator developed by CSA relies on the calculation of group-time specific
average treatment effects on the treated (ATTs), such that

ATT (g, t) =
1

N g

∑
i:Gi=g

[Yit − Yi,g−1]−
1

N G̃

∑
i:GiϵG̃

[Yit − Yi,g−1]. (2.1)

The estimated ATT for mines starting in year g as observed in year t is the
difference in the respective outcome Y between year g−1 and year t, averaged across
all mines established in year g, and then substracted by the same averaged difference
between year g− 1 and year t for all mines G̃ that are not-yet-established. We then
aggregated the ATTs across groups relative to the time of treatment exposure to
obtain dynamic ATT estimates.

Similar to the TWFE estimator, identification of a treatment effect using the es-
timators proposed above relies on the assumptions of parallel counterfactual trends.
If, on average, forest loss in both treated and control units would have developed
in parallel had mining not occurred, the ATT estimates can be interpreted as the
causal effects of mining on deforestation (de Chaisemartin and D’Haultfœuille 2022).
To test parallel pre-trends, we calculated pseudo ATTs for pre-treatment periods.
Pseudo ATTs, also referred to as placebos, estimate an ATT parameter as speci-
fied in Equation 1, but artificially shift the treatment timing to period g − p for a
pseudo effect estimate p periods before the actual treatment. If the pseudo ATTs
are statistically insignificant and close to 0, they can be interpreted as evidence
that the pre-trends are indeed evolving in parallel (Callaway and Sant’Anna 2021;
de Chaisemartin and D’Haultfœuille 2022).

We estimated pseudo-effects for 10 pre-treatment periods for all distance rings
between 1 km and 25 km from the mines, as well as for the 5km buffers. Of all
pseudo-coefficients, only the estimate in 1 km distance one year before mining was
statistically different from zero (Figure 2.2a, Figure 2.3). Therefore, we interpret the
pseudo-effects as evidence supporting the parallel counterfactual trends assumption.

For additional robustness, we rerun the estimates with a recently developed,
heterogeneity-robust two-stage estimator (Gardner 2022). Further, we employ a
spillover-robust extension of it (Butts 2023) to ensure that no contamination of
estimates from other mines in the surrounding areas would systematically bias the
estimates through spillover deforestation (Figure 3.5).

2.4.3 Heterogeneity of impacts

The heterogeneity analysis shown in Figure 4 was conducted by estimating con-
ditional ATTs using non-parametric partial linear estimation (Cleveland, Grosse,
and Shyu 1992; Ferraro, Hanauer, and Sims 2011). The residualised outcome from
the first stage regression of recently developed imputation based DiD estimators
(Gardner 2022; Borusyak, Jaravel, and Spiess 2024) was used as dependent vari-
able (i.e. the difference between the expected deforestation in the absence of mining
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based on the estimated counterfactual trend from the first stage regression and the
observed deforestation; see Supplementary Information section C).

The residualised outcome was then regressed on different covariates identified
in the literature as potentially influential for the extent of triggered deforestation
around mines. Given that multivariate non-parametric regressions were not possible
with the limited number of observations, we ensured that the covariates did not
capture the same predisposing characteristic by calculating correlation coefficients
between them (see Supplementary Information Table 2.3).

We used forest loss observations one year before and five years after the start of
mining to see how the heterogeneity in forest loss changes with the onset of mining
activities. We chose 5 years as a suitable comparison time span in a trade-off between
giving trigger dynamics enough time to set in and maintaining a large enough sample
of mines with sufficiently long time series. Observations that showed as outliers in
the distribution of the respective covariate were removed to avoid extrapolation in
the tails.
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Appendix A

Alternative control regimes

The DiD estimates reported in the article use not-yet-established mines as control
units for calculating the group-time average treatment effects for already established
mines. This strategy allows us to not rely on randomly chosen control units that
may differ from mining locations in non-random ways, but also imposes a slightly
stronger parallel trends assumption than estimation with never-treated control units
(Marcus and Sant’anna 2021). Following Callaway & Sant’Anna (2021) (Callaway
and Sant’Anna 2021), the parallel trends assumption for group g in time period t > g
under a never-treated control regime without treatment anticipation is formalised
as

E[Yt(0)− Yt−1(0)|Gg = 1] = E[Yt(0)− Yt−1(0)|X,C = 1] (3.1)

where Yt(0) is the outcome in year t, Gg indicates whether a unit received first
treatment in period g, X is a vector that allows to include covariates if parallel
trends only hold conditional on covariates and C indicates whether a unit is never-
treated. It is important to note that the left side of the equation in assumption
1 involves a counterfactual that is not observable and typically inferred from the
analysis of pre-trends.

In comparison, the parallel trends assumption with not-yet-treated control units
is formalised as

E[Yt(0)− Yt−1(0)|Gg = 1] = E[Yt(0)− Yt−1(0)|X,Ds = 0] (3.2)

with Ds being a treatment indicator and s ≥ t. Comparing the two assumptions,
it can be seen that the former restricts parallel trends for each group g to a compar-
ison between g and the group of never-treated control units that remains constant
over time, while the latter assumption imposes parallel trends between group g and
the group of not-yet-treated units that changes over time.

The question which control regime to use then ultimately depends on whether
one believes parallel trends are more reasonable to hold between mining sites and
randomly chosen control units, conditional on covariates (assumption 1), or whether
the assumption is more reasonable to hold for mining sites established in different
years, as they serve as control units for each other (assumption 2). Given that
assumption 1 in our case relies crucially on the inclusion of all relevant covariates that
could lead to a violation of parallel trends to account for the heterogeneity between
randomly chosen and mining locations, we opted for not-yet-established mines as
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the more comparable control units in the main specification (de Chaisemartin and
D’Haultfœuille 2022).

The DiD design can be enhanced with the inclusion of covariates with the rational
to correct for violations of the parallel trends assumption (Callaway and Sant’Anna
2021). Although we interpreted the pseudo-effect estimates for the unconditional
specifications with not-yet-treated control units in the article as evidence in favor
of parallel trends, testing how results change after conditioning on covariates can
provide a useful robustness test (Roth 2022). Therefore, we conditioned the pre-
trends on a number of covariates (Table 3.1) and reran the analysis. As reported
in Figure 2.1, results were smaller than without covariates, now amounting to 2.7
pp additional forest lost compared to the 4 pp from before. However, the effect
remained significant and clearly visible.

Table 3.1: List of covariates used as control variables under conditional parallel trends.

Variable Description Source

Tree cover in 2000 Share of pixels with >60% tree cover
in spatial extent

Hansen et al. (2013)

Accessibility Travel duration via surface transport
to nearest town of at least 50,000
inhabitants or contiguous area with
1,500 or more inhabitants per square
kilometre

Weiss et al. (2018)

Distance to roads Distance to the closest road,
classified as either primary or
secondary

OpenStreetMap

Distance to rivers Distance to the closest river OpenStreetMap
Altitude Altitude of the location FAO’s GAEZ

(Fischer et al. 2021)
Slope Slope of the location FAO’s GAEZ

(Fischer et al. 2021)
Temperature Average temperature FAO’s GAEZ

(Fischer et al. 2021)
Precipitation Annual precipitation FAO’s GAEZ

(Fischer et al. 2021)
Distance to logging
roads

Distance to logging roads established
before 2003

Kleinschroth et
al. (2019)

Distance to border Distance to the nearest national
border

DRC Forest Atlas
(WRI)

Distance to
Protected Areas

Distance to the nearest protected
area border, with negative values for
locations inside.

DRC Forest Atlas
(WRI)

In a second variation from our basline specification, we picked random locations
with more than 30% pixels of > 60% tree cover within 5km buffers (Figure 3.4b).
We then estimated the DiD for the “never-established” mines while conditioning
on the covariates in Table 3.1. For this specification, we found an additional loss
of 3 pp after 10 years, again slightly lower than the estimate from the main spec-
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ification but larger than the covariate-matched approach with not-yet-established
mines as control units. However, we note that the two of the pseudo coefficients are
statistically different from 0 in this case.

Figure 3.1: Estimates of impact on cumulative deforestation since 2000 as percentage
points of additional forest cover lost, within a 5-km radius around mines, over time since
treatment for various land uses following deforestation. All estimates conditional on the
covariates tree cover in 2000, accessibility, distance to roads, distance to rivers, altitude,
location, growing period length, distance to logging roads and distance to national borders.
a Not-yet-established mines as controls (n=255) and b Never-treated randomly chosen con-
trol units (n=1255). Bootstrapped standard errors are clustered at the mine level. Points
indicate ATT estimates following the DiD estimator proposed in Callaway & Sant’Anna
(2021) and errorbars refer to 95% confidence bands.

Alternative data

The data used in our main analysis is based on Masolele et al (2024) Masolele et
al. (2024) . Although it relies on Global Forest Change (GFC) data (Hansen et al.
2013) for the detection of deforestation events, it markedly differs from GFC. GFC
identifies tree cover loss since 2001, which can be a consequence of deforestation or
degradation, but also canopy cover loss on non-forest land (Pendrill et al. 2022).
In contrast, the data from our main analysis focuses on post-forest land use and
therefore on persistent land-cover change, which excludes many forest loss events in
GFC.

To illustrate this difference, we reran the analysis with GFC data and compared
it with results estimated with the Tropical Moist Forest (TMF) data set developed
by (Vancutsem et al. 2021). TMF has the same resolution as GFC but does not
work with a canopy threshold to define forest loss. Instead, TMF tracks forest
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changes since 1986 and classifies them as undisturbed, degraded or deforested forest
pixels, depending on the severity and duration of canopy cover disturbance. To be
classified as deforested, disturbance within a forest pixel must exceed 2.5 years.

As the results in Figure 3.1 show, the deforestation estimates using TMF are
similar to those from our main analysis, while TMF degradation and GFC forest
loss are substantially higher.

Figure 3.2: Additional disturbance effects by datasets. Points indicate ATT estimates
following the DiD estimator proposed in Callaway & Sant’Anna (2021) and errorbars refer
to 95% confidence bands. n=255 mining sites.

Alternative estimator

In addition to Callaway and Sant’Anna’s (2021) (Callaway and Sant’Anna 2021)
(CSA) group-time specific estimator, we also used the two-stage procedure proposed
by Gardner (2022) (Gardner 2022) (GAR) (see also Borusyak et al. (2024)(Borusyak,
Jaravel, and Spiess 2024)for a similar approach). In contrast to CSA, it follows a
two-stage procedure. First, counterfactual trends that would occur in the absence
of treatment are imputed by using the not-yet-treated units only:

Yit = µi + λt + uit (3.3)

Once Y is imputed, the ATTs can be estimated using a second stage regression
of treatment dummies on the imputed outcome.

Lead coefficients for the years before treatment can be included into the second-
stage regression to test the plausibility of the parallel trends assumption. As Roth
et al. (2023) (Roth et al. 2023) note, the GAR estimator relies on a more strin-
gent parallel pre-trends assumption than that of CAS to obtain unbiased estimates,
since it requires parallel pre-trends to hold for all included pre-treatment periods to
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impute the counterfactual. In contrast, CSA’s group-time weighted average estima-
tor only relies on parallel trends in the period before treatment begins for a valid
counterfactual, although it seems unlikely that parallel trends would have been ob-
served in the absence of treatment in such a case. It can therefore be useful to
limit the number of lead coefficients that are used to impute the first stage. In the
absence of an established procedure by which to determine the number of leads, five
pre-treatment periods were used throughout the analysis.

Figure 3.3: Event-study plots showing the ATT estimated as additional percentage points
of forest lost within rings of increasing distance from the mining sites, over time. Plots a,
b and e are estimated following Callaway & Sant’Anna (2021), while b, d and e employed
the Gardner (2022) two stage procedure. The colours refer to the increasing distance from
the mines. Confidence intervals are displayed at 95% level. n = 255 mining sites.
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Figure 3.2 compares the CSA and GAR estimates in relation to time since the
first mining incidence and distance from the mine. It shows that estimates run using
GAR are more conservative across all specifications, although they still clearly reveal
the effects of mining on surrounding forests.

Figure 3.4: Estimates of impact on cumulative deforestation since 2000 as a share of
forest cover in 2000 within a 5-km radius around mines for different periods following
treatment, showing various land use following deforestation. For every additional kilo-
metre from the mine, a new ring is estimated using a the estimator used by Callaway &
Sant’Anna (2021), and b the estimator proposed in Gardner (2022). Displayed confidence
intervals at 95%.n = 255 mining sites.

Figure 3.3 compares the estimates for the CSA estimator, shown in panel A,
and the GAR estimator, panel B. As with the spatio-temporal estimation, results
from GAR are more conservative than from CSA, but still convey a similar message:
mining leads to substantial forest loss within a 5-km buffer around sites, and farming
activities play an important role in explaining the forest loss.
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Cluster threshold variations

500m 1000m 1500m 3000m

period ATT SE ATT SE ATT SE ATT SE

-5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
-4 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1
-3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
-2 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0
-1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0 0.6* 0.1 0.6* 0.1 0.6* 0.1 0.6* 0.1
1 0.9* 0.1 0.9* 0.1 0.9* 0.2 0.9* 0.1
2 1.1* 0.2 1.1* 0.2 1.1* 0.2 1.1* 0.2
3 1.5* 0.3 1.5* 0.3 1.5* 0.3 1.5* 0.3
4 1.7* 0.4 1.7* 0.4 1.7* 0.4 1.7* 0.4
5 2.1* 0.4 2.1* 0.4 2.1* 0.4 2.1* 0.4
6 2.5* 0.5 2.5* 0.5 2.5* 0.5 2.5* 0.5
7 2.8* 0.6 2.8* 0.6 2.8* 0.5 2.8* 0.5
8 2.8* 0.6 2.9* 0.6 2.9* 0.7 2.8* 0.6
9 3.5* 0.9 3.5* 0.9 3.5* 0.9 3.5* 0.9
10 3.9* 0.9 3.9* 0.9 3.9* 0.9 3.9* 0.9

Notes. Impact estimates within 5-km buffers around mines
using Callaway & Sant’Anna (2021) estimator for different
cluster thresholds. ATT estimates without 95% confidence
intervals spanning zero are indicated with *. n = 255 min-
ing sites.

Table 3.2: Cluster threshold variations

Spillover-robust estimation

A challenge in the empirical strategy is the isolation of one mine’s forest loss
effect from another proximate mine’s spillover effects. Such contamination could
bias pre-trend estimates or lead to problems of “double counting”, where the for-
est loss effect of one mine inflates the estimated effect of another. Although im-
portant to consider in many settings, DiD designs with spatial spillovers are still
poorly understood (Roth et al. 2023). We account for potential spillovers in a
ring-estimator framework as outlined in Butts (2023), where control units can be
exposed to treatment effects from nearby treated units. The spillover estimation is
similar to the two-stage estimator of Gardner (2022), the difference being that the
first stage is imputed from observations that are not-yet-treated and, additionally,
not-yet-spillover-exposed, i.e. they do not have any active mines located nearby. By
including spillover-exposure dummies into the second-stage regression, the treat-
ment effect can be spllit into the spillover deforestation from other mines and the
actual deforestation from the mine itself, given that the parallel-trends assumption
extends to the spillover area.
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Figure 3.5 shows that the spillover-robust ATT estimates do not differ systemat-
ically from the ATTs estimated using the two-stage procedure outlined in Gardner
(2022). The spillover effects appear insignificant and relatively constant over time.
Therefore, we conclude that spillovers do not impact the validity of our findings.

Figure 3.5: Spillover-robust estimation. Points represent effect estimates with ’ Gardner
(2022)’ referring to ATTs estimated with the two-stage estimator proposed in Gardner
(2022), while ‘Spillover effect’ and ‘Treatment effect’ refer to estimated parameters as
suggested in Butts (2023). Bootstraped 95% confidence intervals are displayed.
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Accessibility Agr. Suitability River distance Primary road dist. Main road dist. Forest cover in 2000 Conflict events

Accessibility 1 . . . . . .
Agr. Suitability -.08 1 . . . . .
River distance -.05 .02 1 . . . .
Primary road dist. .39 -.15 -.21 1 . . .
Main road dist. .57 -.18 -.17 .36 1 . .
Forest cover in 2000 .32 -.15 .11 .10 .14 1 .
Conflict events -.02 -.05 -.01 -.09 -.02 -.16 1

Table 3.3: Pearson correlation coefficients for the different variables tested in the het-
erogeneity analysis.

Descriptive statistics

Figure 3.6: Boxplot diagrams for identified mining sites (n=255) drawn for different
covariates. The unit of the score on the x-axis changes with covariates as in indicated in
the variable discription on the y-axis.

Software

The analysis was conducted in R version 4.3.2. For the data processing, we
used the packages terra (Hijmans et al. 2023) and sf (Pebesma et al. 2023). The
statistical analysis relied on the packages did (Callaway and Sant’Anna 2022)and
did2s (Butts [aut et al. 2023).
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”The ‘tired’ soil is both an agronomic reality and a second symbol of
change, encoded with all of the frustrations and diminishing returns of
agrarian life. To the misfortune of farmers, continuity and rupture are
not exclusive. Households are trapped between the legacy of the past
in the allocation of land, and a present without the synergies or social
structuring of mixed farming. Dismaying of this, many are turning to
the future instead. The new realm of modern activities completes the
break with the poisoned past, leaving behind the risks and constraints of
the farm, albeit for new games with long odds.”

(Cox, 2012)
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Abstract Living conditions of the rural population in the eastern Democratic

Republic of Congo (DRC) have suffered from prolonged violent conflicts, poor

governance, declining soil fertility, and lack of infrastructure to support eco-

nomic development. In parallel, artisanal mining has become a widespread

livelihood activity in the area. This study investigates the ways mining inte-

grates into households’ livelihood strategies and its implications on livelihood

outcomes. It draws on household surveys conducted around Kahuzi-Biega Na-

tional Park and Itombwe Nature Reserve in the South-Kivu province to show

that mining households tend to experience higher food security compared to

non-mining households. They also tend to rely less on agriculture for their

livelihood, suggesting substitution of farming activities in favour of mining.

4.1 Introduction

The Democratic Republic of Congo (DRC) is one of the richest countries in
mineral resources, having large deposits of cobalt, tin, gold and copper, among
others (Edwards et al., 2014). Despite this abundance, poverty is widespread and
large-scale extractive industries have not settled in many parts of the country after
decades of political instability (Kilosho Buraye et al., 2017; Radley, 2020). Especially
in the eastern part of the country where extensive gold and 3Ts (tin, tungsten and
tantalum) deposits are located, extraction tends to occur artisanally at a small scale
with handheld tools, involving more than 200,000 miners in the North- and South-
Kivu provinces alone (IPIS, 2023).

The largely informal artisanal mining sector faces environmental, social and po-
litical challenges. It is commonly associated with environmental pollution (Nkuba
et al., 2019), loss of forest and biodiversity (Ladewig et al., 2024; Sonter et al.,
2018; Spira et al., 2019), spurring of conflict and violence (Stoop et al., 2019; Vo-
gel, 2018), and human exploitation from the precarious working conditions under
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which minerals are extracted (Sovacool, 2019). While having these negative asso-
ciations, artisanal mining has become a cornerstone in the livelihood strategies of
many rural households in eastern DRC as a comparably profitable and accessible
income opportunity (Spira et al., 2019). It has been described as a safety net in
times of hardship (Kelly, 2014; Smith, 2011), and provides an income opportunity
even in remote locations where other alternatives are scarce (Bryceson & Geenen,
2016; Smith, 2011).

Motivations of households to engage in mining are commonly distinguished into
push and pull factors (Banchirigah & Hilson, 2010; Hilson, 2010; Maclin et al., 2017).
Push factors describe those that make people abandon their traditional farming
livelihoods in response to hardship and poverty and look for alternatives. For rural
households, such hardship can have various origins, including the deterioration of
farming conditions (Hilson & Garforth, 2012). Pull factors, on the other hand, relate
to characteristics of mining that draw people towards it, such as the expectation that
mining will provide an opportunity to earn a lot of money in a short time.

Although such a distinction might be a useful simplification, push and pull fac-
tors often act simultaneously and their boundaries can be fluent (Hilson & Hu,
2022). The context of the eastern DRC showcases this well, as rural livelihood con-
ditions have suffered greatly under decades of political instability, while the density
of artisanal mines in the region is among the highest in the world.

In this study, we use the livelihoods framework of Ellis (2000) to investigate the
motivations and implications of households’ decisions to diversify their livelihoods
through artisanal mining around protected areas in South-Kivu, eastern DRC. Mov-
ing beyond the push and pull factor dichotomy, we distinguished miners by their
reliance on mining to investigate how permanent, occasional and non-mining house-
holds differ in their livelihood strategies and outcomes. We first construct a simple
analytic model to describe households’ decisional processes to allocate labour re-
sources away from farming towards mining. We then introduce an empirical model
based on data collected during fieldwork around Kahuzi-Biega National Park and
Itombwe Nature Reserve in South-Kivu, eastern DRC. The results suggest that non-
mining households experienced a higher degree of food insecurity. De-agrarianisation
was observed, but only among households with a high reliance on mining for their
livelihoods.

4.2 Background

4.2.1 Study area

The data collection for the paper took place in villages surrounding Kahuzi-Biega
National Park (“Parc National de Kahuzi-Biega”, PNKB) and Itombwe Nature Re-
serve (INR) in the Albertine Rift, known for its outstanding biodiversity, including
large numbers of endemic and endangered species (Plumptre et al., 2007) (Figure
4.1).

The montane forest around Mt Kahuzi in South-Kivu, eastern DRC, was first
declared a forest reserve in 1937 under Belgian colonial rule and enlarged in 1951
to also encompass Mt Biega (Flummerfelt, 2022). It gained National Park status
in 1970, when communities living inside the park were violently displaced without
compensation for the purpose of conservation (Domı́nguez & Luoma, 2020). Many
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Figure 4.1: Map of study area with surveyed villages and mining sites from IPIS (2023)
and GPS coordinates collected during field work.

of the evicted people belonged to the indigenous Batwa people who relied on the
forest for their hunter-gatherer livelihoods, and who consequently were stripped off
their spiritual, cultural and intellectual identity (Cuni-Sanchez et al., 2019; Simpson
& Geenen, 2021). PNKB was further extended in 1975, leading to more evictions,
and eventually became listed a World Heritage Site in 1981, even if the title is at risk
as of 2022 due to threats from illegal human activities, such as mining and hunting
(Kirkby et al., 2015).

In 2018, Batwa communities who became landless after the evictions attempted
to resettle in their ancestral lands inside the protected area (Barume, 2000; Flum-
merfelt, 2022; Simpson & Geenen, 2021). At the same time, deforestation inside the
park surged. Some related the forest loss to changing Batwa livelihoods from their
traditional forest reliance to more extractive activities after decades of living outside
of the forests, such as the extraction of charcoal, timber and minerals (Simpson &
Geenen, 2021). Others interpreted the change to be the result of outside actors
instrumentalising the Batwa and using their resettlement to cover up for illegal ac-
tivities inside the park (Flummerfelt, 2022). Ultimately, in 2019, a new wave of
atrocities occurred when armed park rangers joined forces with the Congolese army
and expelled communities once more, leaving behind destroyed villages and injured
or in some cases even dead Batwas (Flummerfelt, 2022). Thus, the history of PNKB
displays itself as a case of fortress conservation, where green militarization has been
used to isolate the forest from human interference, posing important constraints on
the livelihoods of communities who have traditionally lived inside them (Domı́nguez
& Luoma, 2020).

In contrast to PNKB, the discussion to protect the forest of the Itombwe massif
only took off in the late 1990s, after observations were made that gorilla and elephant
species declined dramatically during the First Congo War (1996-1997) (Simpson &
Pellegrini, 2022). The Rwandan genocide in 1994 had initiated a stream of refugees
across the border, followed by several armed groups who chose the sparsely inhabited
forests as hide-aways and to the day destabilize the region. The area was eventually
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declared a nature reserve per decree by the minister of the environment in 2006.
The absence of dialogue during the gazettement process led to resistance from lo-
cal communities and conservation NGOs alike, and ultimately to a redrawing of
the park boundaries following a participatory mapping process in 2016 (Gauthier
& Pravettoni, 2016; Kujirakwinja et al., 2019). The new nature reserve foresees
different zones that allow for sustainable hunting and agriculture outside of the core
zones (Kujirakwinja et al., 2019). However, the conservation area remains contested
in some communities even after its re-establishment (Simpson & Zirhumana, 2021).
The ethnic groups surveyed for this study were mostly of the Warega and Nyindu,
of which the latter are farmers who are sometimes considered related to the Twa
(Cuni-Sanchez et al., 2019).

Both protected areas impose restrictions on land use and forest resources, thereby
reducing the options of coping with deteriorating living conditions during the decades
of prolonged armed conflict. In addition, violence-driven displacement limits access
to agricultural land and makes long-term planning difficult, as several interviewees
reported. The looting of fields by armed groups and raiding of large livestock, once
considered the highest valued asset but now largely vanished, have further exac-
erbated rural poverty and also impacted manure-reliant farming practices in some
parts of South-Kivu (Cox, 2012; Kelly, 2014; Verweijen & Brabant, 2017). In combi-
nation with declining soil productivity, the dissolution of local agricultural markets
and limited capacity to adapt to a changing climate, it has become increasingly
challenging to rely solely on farming (Amani et al., 2022; Cox, 2012).

Whereas farming became less viable, mining remained a widespread income op-
portunity both outside and inside of PNKB and INR (Simpson & Zirhumana, 2021;
Spira et al., 2019). It provides a livelihood alternative with higher income than
farming and neither requires training nor assets to engage (Bryceson & Geenen,
2016). While providing income to people, “conflict minerals” also act a source of
revenue to rebel groups who operate mines, thereby fueling the conflict and adding
another layer to the complex livelihood context (Matthysen et al., 2019; Radley &
Vogel, 2015; Stoop et al., 2019).

4.2.2 Artisanal mining in eastern DR Congo

Although mineral extraction has a long history in the DRC, the actors involved
have changed over time. During Belgian colonial rule, mining occurred predomi-
nantly in industrial form. However, with increasing insecurity during the Congo
wars, extractive industry abandoned the country and artisanal mining emerged as a
major alternative to the unstable farming conditions (Huggins, 2023; Kelly, 2014).

Towards the end of the Second Congo War in 2002, former president Joseph
Kabila attempted to regain government control over the mining sector, among oth-
ers through unsuccessful attempts to re-establish industrial operations through tax
reductions and other incentives (Geenen, 2014; Kilosho Buraye et al., 2017). In par-
allel, new laws were passed to formalise the dominant and largely informal artisanal
mining sector. The revised mining code of 2002 and subsequent decrees in 2003,
2010 and 2012 resulted in a number of stipulations by the Ministry of Mining (Haan
& Geenen, 2016). According to the 2002 code, workers are obliged to operate inside
designated Artisanal Extraction Zones (AEZs). In practice, the number of AEZs is
limited, and their status can be revoked at any time, e.g., if large-scale industries
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claim an interest in an area (Kilosho Buraye et al., 2017). Geenen (2012) also notes
that AEZs are created by authorities without knowledge of local circumstances and
in absence of consultation with miners, leaving many unsatisfied with the areas as-
signed as AEZs. In practice, artisanal mining continues to occur also outside of
AEZs (Kilosho Buraye et al., 2017).

The second stipulation of the mining code aimed at formalizing artisanal mining
by organizing miners into cooperatives (Haan & Geenen, 2016). By law, artisanal
miners are required to acquire a ‘carte de creuseur’, a mining card, paid in cash or an
equivalent value in minerals (PACT, 2010). In a context of undemocratic hierarchi-
cal structures and lacking alternatives, the cooperatives create strong dependencies
instead of increasing workers’ agency (Haan & Geenen, 2016). Cooperatives also
serve as a middle-actor through which miners sell minerals to the market. Since
the de facto implementation was limited in the years after the law was passed, a
six-month-lasting artisanal mining ban for the regions North-Kivu, South-Kivu and
Maniema was announced (Geenen, 2012). However, the ban only had minor effects,
as the implementation remains low and the sector is still largely informal (Kilosho
Buraye et al., 2017).

Finally, in 2012, the International Tin Supply Chain Initiative (ITSCI) intro-
duced a color code to label artisanal mines according to risk factors as green (“safe”),
yellow or red (“unsafe”) based on a mine’s human rights standard and the absence of
armed groups (Haan & Geenen, 2016; Iguma Wakenge et al., 2021). Minerals from
green sites are granted certification and are allowed to be traded on the international
market, while minerals from unsafe sites are theoretically prevented from entering
supply chains. In reality, the coverage of ITSCI remains partial and loopholes exist,
having the miners incur the additional costs (Vogel, 2018). Among the 3T-mines
listed on the web-map of the International Peace Information Service (IPIS) cover-
ing eastern DRC, 41% are currently assessed under the iTSCi scheme, and only 21%
earned green classification status (IPIS, 2023). The sector thus remains informal,
with an array of competing actors involved.

4.3 Conceptual framework

4.3.1 Livelihoods framework

We adopt a livelihoods framework as developed in Ellis (2000) and Scoones
(1998), among others. Assets play a central role in the framework and are distin-
guished into natural, physical, social, human and financial assets. Conditional on
these assets, a household chooses a livelihood strategy consisting of one or more ac-
cessible activities, which ultimately determines its welfare and vulnerability status.
The asset stock of a household may change over time, depending on the outcomes
it realises from the chosen livelihood strategy. The larger institutional, environ-
mental and socio-economic context a household is situated in further influences a
household’s assets, livelihood strategy and outcomes.

Livelihood diversification is a common phenomenon among the rural poor and
describes a process by which households develop a diverse portfolio of activities to
rely on in their livelihood strategies. The motivations to diversify can be manifold,
including a reduction of income failure risk, seasonal gap filling during agricultural
off-season, and responding to negative shocks (Ellis, 2000). The pluriverse of motives
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commonly gets reduced to factors of necessity and choice (sometimes also referred to
as push and pull) in the literature on livelihood diversification (Barrett et al., 2001).
This dichotomy has also established itself in the literature for explaining livelihood
diversification through artisanal mining (Banchirigah & Hilson, 2010; Hilson, 2016).
Diversification by necessity describes a response to distress and shocks, of which the
rural poor tend to experience numerous and which force housholds to seek alterna-
tives from their traditional livelihoods. Diversification by choice, on the other hand,
is rather motivated as a forward-looking strategy, adopted to reduce risk of income
failure and to increase expected income (Banchirigah & Hilson, 2010; Ellis, 2000).

The livelihood space of communities in the study region of South-Kivu has been
shaped by regular disturbances in the form of immediate shocks, but also as gradual
shifts that have initiated a reorientation of livelihood strategies. Ongoing conflicts
for the past decades have exposed households to sudden shocks of various forms.
Violence-driven displacement stripped farmers of their land or made them lose live-
stock, harvest and other productive assets, as they became target of raiding armed
groups (Kelly, 2014; Verweijen & Brabant, 2017). Branching out into other activ-
ities, especially those with low entry barriers, often provided a safety net against
shocks in the absence of savings or assets to liquidise (Angelsen & Dokken, 2018).
The constant state of insecurity has also lead to a more gradual reshuffle of liveli-
hood strategies. Pastoral activities have disappeared in large parts of Eastern DRC
due to raiding of livestock, also affecting manure-dependent agricultural practices
(Cox, 2012; Verweijen & Brabant, 2017). Farming has been entirely replaced by
mining in some locations (Kelly, 2014; Smith, 2011).

Conservation interventions, present throughout the study area in the form of
protected areas, can further disturb traditional livelihoods, given that they limit
access to land and forest resources (Baird & Leslie, 2013; Kujirakwinja et al., 2019).
Several forms of forest income such as timber extraction, charcoal production and
hunting are restricted. These are income sources which usually offer readily avail-
able responses to shocks for forest communities due to their low entry barriers and
quick returns (Angelsen et al., 2014; Wunder et al., 2014). Conservation can also
create new opportunities, e.g., through eco-tourism, Payments for Ecosystem Ser-
vices (PES) or Integrated Conservation and Development Projects (ICDPs) (Baird
& Leslie, 2013), but such opportunities have not emerged in eastern DRC where
basic structures are lacking to make these work and insecurity remains high.

Further distress on traditional rural livelihoods is exerted by the overall dete-
rioration of agricultural conditions. Most farming activities are rain-fed with low
inputs, and the adaptation capacity to shifting weather patterns from climate change
remains low (Amani et al., 2022; Balasha et al., 2023). Also, crop diseases have de-
creased yield in recent years and made farming less attractive (Amani et al., 2022).

Long-term strategic investment and the build-up of assets are challenging in such
an unstable context. Cash crops like coffee or oil palm, for instance, take several
years to mature, whereas mining and other forms of resource extraction represent an
accessible way to quick returns, making them an efficient response to shocks (Wunder
et al., 2014). When alternative coping strategies such as the selling of assets or the
spending of savings (Angelsen & Dokken, 2018) are no options, choices necessarily
fall on alternative activities with low entry barriers and quick returns. Given the high
spatial density of artisanal mines in eastern DRC, mining is an accessible option for
diversification, as it does not require initial investment into assets, promises instant



82 Paper II

cash income and can flexibly complement other livelihood activities. However, it
does require the strategic reshuffling of labor resources. As labor is limited by
household size and composition, committing more into one livelihood activity implies
a trade-off in terms less time spent on another activity.

4.3.2 A simple analytical model

We illustrate a household’s decision to branch out into alternative income oppor-
tunities in an analytic model. In the tradition of Singh et al. (1986) and Sadoulet
& De Janvry (1995), we assume a household to maximise its expected utility by
allocating its available labor L between different livelihood alternatives, which for
the sake of the analysis are limited to farming, mining and other income-generating
activities (indicated with subscripts f , m and o, respectively). Assets also influence
the choice of livelihood activities, but are here assumed fixed and, unlike labor, not
subject to an allocation across activities.

We assume households to be risk averse with strictly increasing and strictly
concave utility functions, such that:

u(E[y]) ≥ E[u(y)] with u′(y) > 0, u′′(y) < 0. (4.1)

The optimal allocation of labor can be specified as a constrained optimisation
problem of a household’s certainty equivalent (CE):

max
Lf ,Lm,Lo

CE = E[w + y]− π − δ(Lm, Lo)

s.t. y =
∑

i∈{m,f,o}

yi(Li, X),

L̄ =
∑

i∈{m,f,o}

Li

(4.2)

Here, the utility depends on the initial wealth w, the risk premium π, the reluc-
tance from reducing labor in traditional farming livelihoods, and the realised cash
and subsistence income y, i.e., the sum of income from the different livelihood ac-
tivities. The income yi from activity i depends positively on the assigned amount of
labor Li and the endowment of other assets X of a household. Especially farming
relies on assets such as access to arable land, livestock units (lsu) and other agri-
cultural inputs, whereas mining income does not directly depend less on such asset
endowments. The amount of labor to be allocated is constraint by a household’ s
overall available labor force, L̄.

If all activities were equally exposed to risk, the risk-reducing effect of diversifica-
tion could be derived from the risk premium, as defined by Arrow (1971) and Pratt
(1978) (see e.g., Bezabih & Sarr (2012) or Baumgärtner & Quaas (2010) for rele-
vant applications). Since differences in risks between activities drive diversification
decisions, we consider the case of multivariate risk exposure. Without further infor-
mation on the covariance structure of the different risks, we make the simplifying
assumption that risks are mutually independent and additive (Duncan, 1977).
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Assumption 1
(i) ∂yi

∂Li
> 0: The income from activity i increases with the amount of allocated labor

Li.
(ii) The risks associated with different livelihood activities i, j ∈ {m, f, o} are mutu-
ally independent, such that σij = 0 for all i ̸= j.

Although point (ii) assumption 1 is a strict one and unlikely to hold, we prefer
it over assuming an arbitrary covariance structure. It is not a priori clear whether
covariances between risks would be negative or positive, as some shocks have negative
impacts on all activities (e.g., sickness of household members) while others can be
positive (e.g., the complementary seasonality of mining and farming). Then, similar
to Bezabih & Sarr (2012), the risk premium π is specified as the income-weighted
sum of risk premiums on the different activities in the livelihood portfolio of a
household given the chosen labor allocation:

π =
ρ

2

∑
i∈{m,f,o}

y2i σ
2
i (4.3)

ρ represents the Arrow-Pratt coefficient of risk aversion (Sadoulet & De Janvry,
1995), and σ2

i is the variance of output yi.
As a simplifying assumption to derive the relationship between labor allocation

towards farming and mining, we focus only on these two activities in solving equation
4.2. We make the following assumptions about the income and the risk relationships
between farming and mining:

Assumption 2
∂π
∂Lf

> ∂π
∂Lm

for Lf = Lm: A marginal increase in farming labor leads to a higher in-

crease in risk premium than a marginal increase in mining labor for a given amount
of allocated labor.

Assumption 2 states that farming is associated with higher risk than mining.
Both statements find well-documented support in the literature (Cox, 2012; Maclin
et al., 2017; Spira et al., 2019).

From the first order conditions from equation 4.2, it can be shown that the
optimal allocation of labor is given by (see appendix):

[
∂y

∂Lm

(L∗
m)−

∂π

∂Lm

(ym, σ
2
m)]− [

∂y

∂Lf

(L∗
f , X))− ∂π

∂Lf

(yf , σ
2
f )] =

∂δ

∂Lm

(L∗
m) (4.4)

Given that assumption 2 holds, we know that the left-hand side of equation 4.4 is
positive. Under optimal labor allocation, a household thus diversifies its livelihoods
towards mining until the additional risk-adjusted marginal income from mining,
compared to risk-adjusted income from farming, equals the marginal disutility from
having to move from farming to mining.



84 Paper II

Assumption 3
(i)

∂yf
∂X

> 0,
∂yf
∂X

= 0: Asset endowment X increases farming income, but has no
effect on mining income.

(ii)
∂y2f

∂Lf∂X
≥ 0, ∂y2m

∂Lm∂X
= 0: An increase in assets X increases the marginal pro-

ductivity of labor in farming, but has no effect on marginal productivity of labor in
mining.

Assumption 3 reflects the characteristic of mining being an accessible livelihood
activity with low entry barriers that does not require mentionable investments into
assets (Bryceson & Geenen, 2016).

Given assumption 3, the following relationships can be derived from the model
(see appendix):

∂Lm

∂σ2
f

> 0 (4.5)

∂Lm

∂ρ
> 0 if σ2

fyf
∂yf
∂Lf

> σ2
mym

∂ym
∂Lm

(4.6)

∂Lm

∂X
< 0 if

∂π

∂yf
< 1 (4.7)

Equation 4.5 states that households will allocate more labor to mining as farm-
ing gets more risky. This results explains the emergence of artisanal mining as a
consequence of deteriorating conditions of farming, as it has been described in the
literature (Cox, 2012; Kelly, 2014). Equation 4.6 states that more risk-averse house-
holds will allocate more labor to mining if the resulting variance-weighted increase
in income for mining is lower than the one for farming. Thus, a trade-off between
risk and income gain ultimately determines the degree of diversification into min-
ing of risk averse households. Finally, given the higher asset intensity of farming
compared to mining, equation 4.7 establishes that a higher asset endowment is asso-
ciated with less labor allocation to mining in the respective household. As farming
productivity increases with asset ownership, it is intuitive that more assets reduce
the attractiveness of mining.

4.4 Empirical analysis

Given the unstable political context in the region, quantitative empirical research
has been scarce. In the absence of longitudinal data, the causal dynamics under-
lying livelihood diversification cannot be tested in robust ways. Nevertheless, to
empirically assess the relationships derived in the analytical model and identify cor-
relations, we employed regression analysis on cross-sectional data collected during
fieldwork in June and July 2022 in four different areas, two adjacent to PNKB and
two in proximity of INR.

4.4.1 Data

Surveys were conducted in the form of 150 focus group interviews with miners
in the village groups (groupements) around Kigogo and Mwenga (INR), and 278
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randomly selected household interviews in the villages surrounding Mwenga (INR),
Bitale (PNKB) and Luhago (PNKB) (Figure 4.1). All interviews were held in either
Swahili or one of Rega, Mashi or Tembo.

The 150 focus group interviews targeting miners were conducted to understand
better the structural aspects behind mining integration into livelihood portfolios.
For this purpose, we used a snowball sampling strategy (Shively, 2011). Since we
were also interested in understanding the share of the population that engages in
mining and want to compare mining to non-mining households, we further collected
a more representative sample of 278 households. No registry of all households in the
village exists, preventing us from drawing a truly random sample, and household
visits were constrained by cultural norms. All interviews were held in a neutral place
in the village centers and targeted passing people. Although not fully randomised,
we believe that this sampling strategy was sufficient to draw tentative conclusions
about the overall populations given the generally small village sizes. Yet, we cannot
rule out that the sampled sub-population varies from the overall village population
in non-random ways. Structural relationships between variables are, however, less
sensitive to any biases in the sample.

Given the difficulty to quantify income (or income-equivalent subsistence pro-
duce), involvement in different livelihood activities was coded as dummy variables
(0-1) and subsequently ranked according to their importance for the household’s
overall livelihood. Only mining was measured in annual working weeks. Livestock
was aggregated into livestock units (FAO, 2011) and recorded assets of a household
summarised in a principal component analysis, of which the first component was
used as a wealth score.

4.4.2 Methods

Given that mining is frequently only one among several livelihood activities, the
degree to which households rely on it varies. To capture this variation in the outcome
variable, we used the number of working weeks spent in a mine as a proxy for the
importance of mining in a household’s livelihood strategy. The outcome variable is
right-skewed but has a high density of zero observations (many households do not
mine at all). In the presence of zero-inflated count data, researchers commonly use
either zero-inflated models or hurdle models with different underlying distributional
assumptions (Hu et al., 2011). The essential difference between the two is that
the latter assumes zero-observations to come exclusively from a structural process,
while the former also allows for zeros “by chance” from the sampling process (Hu
et al., 2011). Since mining as a livelihood strategy is a choice and annual weeks
spent in mines are not stochastically zero by chance, we adopted a hurdle model
that estimated the model in two steps, defined in Cameron & Trivedi (2013) as:

Pr[y = j] =

{
f1(0) if j = 0
1−f1(0)
1−f2(0)

if j > 0
. (4.8)

The first part follows a binomial model which only differentiates between house-
holds that have at least one member actively involved in mining activities and those
that do not, with a binary mining indicator as the outcome variable, thereby ac-
counting for the zero mass point. The second part of the model seeks to explain the
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degree of involvement among households involved using a truncated-at-zero count
data model (Cameron & Trivedi, 2013).

The two-part model is especially useful for our purpose, as it can give potential in-
sights into characteristic differences between mining as an occasional risk-dispersing
activity (first part) and mining as a major income-generating occupation (second
part).

It is important to make the right assumptions about the underlying distribution,
since misspecification leads to inconsistent estimates (Cameron & Trivedi, 2013).
Given that the distribution is over-dispersed, i.e., the mean is larger than the vari-
ance of the count distribution, a negative-binomial distribution was assumed for the
model estimation (Cameron & Trivedi, 2013; Hu et al., 2011), and the choice was
confirmed when comparing it to a model with a Poisson distribution in a Vuong test
(p value <0.001) (Vuong et al., 1989).

We used information on alternative livelihood activities to understand how they
relate to artisanal mining (see Table 1). The distinction into forest income (cate-
gorised into charcoal, timber and non-timber forest products (NTFP) income) and
other income is made as these are structurally different. Like mining, forest in-
come represents an easy-access and flexibly substitutable income source to farming,
and may therefore be competing with the choice of working in the mines. The
area cultivated by a household was included among the covariates to investigate the
relationship between farming and mining engagement.

As argued above, it is reasonable to assume that households who live closer to
the subsistence minimum are less willing to take risks, and therefore more likely to
diversify. To test this, we included the number of months without sufficient food a
household experienced over the last year as a covariate in the estimation.

Finally, in an additional analysis, we used survey information on the names of
mining sites and matched that to their location from our own data collection and
from the IPIS database (IPIS, 2023) to understand the role of geographic location
for livelihood diversification through mining. By drawing connections between vil-
lage locations and the mines that people target, we got insights on the geographic
mobility that miners display (see Figure 5.1 in the appendix).

4.4.3 Results

Descriptive statistics

Looking at the livelihood activities pursued by households, we found that 73%
relied on more than one livelihood activity and 35% were engaged in more than two.
With 32% of all interviewed households involved, artisanal mining was the second
most practiced occupation after farming (Table 4.1), although the village-to-village
variation was large, with 8% in the lowest and 47% in the village with the highest
share of miners. Comparing figures between the two protected areas, we found a
higher share of mining households in PNKB (36%) than in INR (24%), where fish
farming also played a major role.

Overall, only 19% of mining households stated mining as their most important
livelihood activity, as opposed to 72% who ranked farming first, again with notable
regional differences between the two study sites (22% in PNKB and 12% in INR).
To further understand the extent to which households engage in mining, we col-
lected information on the time each miner spent in the mines over the last year.
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Table 4.1: Share of households reliant on different livelihood activities, by village group.

Village group Obs. Farming Livestock Mining Commerce Wage labor Forest income Other

Bitale 100 0.88 0.47 0.37 0.21 0.16 0.39 0.01
Luhago 75 0.96 0.00 0.35 0.09 0.13 0.07 0.00
Mwenga 103 0.99 0.18 0.27 0.13 0.13 0.05 0.37

all 278 0.94 0.22 0.33 0.14 0.14 0.17 0.13
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Figure 4.2: Distribution of time spent in mines by miners

Plotting the distribution of mining weeks per miner for the sample regions, Figure
4.2 shows some regional differences. The proportion of miners who worked in the
mines on a daily basis was lowest in the INR sites Mwenga (5%) and Kigogo (6%)
and highest in PNKB sites Luhago (26%) and Bitale (29%). Especially in Luhago,
the density distribution was strongly left-skewed, implying that mining was more a
regular livelihood choice than an occasional activity.

These differences could not be explained by geographic location alone, since they
even occurred between neighboring villages and geographic distance to mines did
not appear to pose an obstacle. This becomes clear from spatially reconstructing the
connections between the villages and the mines where people worked (Figure 4.1 in
the appendix). Especially in the villages around Luhago south of PNKB, distances
between villages and mines were small and miners were most likely to work in mines
on a daily basis. Other miners covered remarkable distances from their home villages
to mining sites, often through difficult terrain without roads.

In the villages around INR, miners predominantly targeted mining sites located
deep inside the forests of INR. Given that these are often controlled by rebel groups
(IPIS, 2023) and therefore less subjected to governmental regulation and taxation,
they may be better suited to provide a quick extra income in times of need compared
to mines that are organized in cooperative structures. This fits with the observation
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that miners in villages around INR spent fewer weeks per year in the mines as
compared to those in PNKB.

A comparison in means between mining and non-mining households showed that
mining households on average had more household members, experienced less food
insecurity and were less likely to engage in commerce and wage labor as other income-
generating activities (Table 5.1 in the appendix).

Regression results

Table 4.2 shows regression results from the two-part hurdle model. The outcome
for all specifications is the annual mining weeks of a household (see Methods). The
zero model in the first part in the first four columns was estimated in a binomial
logit, while the second part in the last four columns was specified as a truncated
count model with a negative binomial distribution.

Model (1) in columns 1 and 4 shows results for the villages around INR. Coeffi-
cients were mostly insignificant, which largely owes to the small number of observa-
tions and hence noisy estimates.

Model (2) shows results for a sub-sample of villages around PNKB. The sample
size was larger and hence the coefficients more precise. The zero model part in
column 2 showed a significant and negative relationship between the number of
mining weeks per year and alternative income strategies. More specifically, forest
income generation decreased the odds that household members spent at least some
time in the mines to 0.25 (p < 0.05), while other forms of income even indicate odds
of 0.16 (p < 0.001). In the count model part, we found a baseline count of 3.79
mining weeks among mining households. This decreased by a factor of 0.84 with
every additional hectare of cultivated farmland (p < 0.05).

Finally, models (3) and (4) used the entire sample and therefore the most precise
estimates. The latter, which included fixed effects for each site, indicated in the
zero model (column 4) that every month without sufficient food experienced by
a household significantly decreased its odds of being a mining household by 0.47
times (p < 0.05). Further, and in line with the labor allocation model derived in
the previous section, generating forest income reduced these odds by a factor of
0.27 (p < 0.05), and other income by 0.29 (p < 0.01). Among the count model
coefficients, we only found the cultivated hectares of farmland to be significant,
decreasing the number of mining weeks per household by a factor of 0.86 for every
hectare of farming.

Overall, mining households were less likely to go short on food and to engage in
other alternative livelihood strategies compared to non-mining households. Among
households that mine, we further observed that the number of mining weeks de-
creased with the cultivated area. Coefficients on the wealth score coherently showed
a positive relationship in the zero model and a negative relationship in the count
model, although all coefficients were statistically insignificant.

4.5 Discussion

Artisanal mining has become an essential element in the livelihood strategies of
rural households in the eastern DRC. With the high availability of mines over the
region and the willingness of miners to travel tens of kilometers to reach mines, it is
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Table 4.2: Hurdle model regression results for the total number of working weeks per
year and household

Zero model (first part) Count model (second part)

(1) (2) (3) (4) (1) (2) (3) (4)

(Intercept) −2.80∗ −0.46 −0.90∗ −1.00∗ 4.74∗∗∗ 3.79∗∗∗ 3.64∗∗∗ 3.46∗∗∗

(1.09) (0.54) (0.44) (0.50) (0.85) (0.28) (0.27) (0.35)
Men in HH (#) 0.15 0.07 0.03 0.04 0.12 −0.19 −0.18 −0.15

(0.39) (0.23) (0.19) (0.19) (0.29) (0.15) (0.13) (0.14)
Women in HH (#) −0.01 0.28 0.09 0.09 −0.42 0.14 0.14 0.13

(0.42) (0.23) (0.19) (0.19) (0.47) (0.12) (0.12) (0.12)
Children in HH (#) 0.23∗ 0.07 0.10∗∗ 0.10∗ −0.13 0.02 0.02 0.02

(0.09) (0.05) (0.04) (0.04) (0.07) (0.02) (0.02) (0.02)
Months w. insufficient food (#) −0.07 −0.13 −0.11∗ −0.11∗ 0.06 −0.06 −0.02 −0.01

(0.06) (0.08) (0.05) (0.05) (0.05) (0.04) (0.03) (0.03)
Cultivated area (ha) −0.04 −0.23 −0.03 −0.02 0.09 −0.18∗ −0.17∗ −0.15∗

(0.19) (0.15) (0.10) (0.10) (0.15) (0.09) (0.06) (0.07)
Wealth score 0.56 0.25 0.48 0.47 −0.31 −0.06 −0.10 −0.12

(0.51) (0.41) (0.31) (0.31) (0.45) (0.24) (0.21) (0.21)
Livestock units 2.02 0.38 0.24 0.22 0.59 0.02 0.00 −0.01

(2.16) (0.31) (0.23) (0.23) (1.71) (0.07) (0.07) (0.07)
Forest income (0-1) −0.33 −1.09∗ −0.91∗ −0.93∗ −2.03 −0.41 −0.46 −0.49

(1.25) (0.45) (0.41) (0.41) (1.24) (0.26) (0.27) (0.27)
Other income (0-1) 0.07 −1.63∗∗∗ −0.91∗∗ −0.88∗∗ −0.70 0.28 −0.05 0.01

(0.56) (0.45) (0.31) (0.32) (0.44) (0.26) (0.20) (0.21)

Study site INR PNKB All All INR PNKB All All
PA fixed effects no no no yes no no no yes
AIC 332.35 810.60 1134.25 1137.47 332.35 810.60 1134.25 1137.47
Log Likelihood −145.18 −384.30 −546.12 −545.73 −145.18 −384.30 −546.12 −545.73
Num. obs. 102 175 277 277 102 175 277 277
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

accessible to a large part of the rural population and has already shaped livelihoods
significantly (Cox, 2012; Kelly, 2014; Smith, 2011). Using data from South-Kivu in
Eastern DRC, we analytically and empirically investigated the relationship between
traditional farming livelihoods and the widespread adoption of mining in a context
where it is increasingly economically viable and often necessary to branch out.

In Eastern DRC, the deterioration of the livelihoods of smallholder farmers has
been severe during decades of violent conflicts and poor governance. The depletion
of productive assets due to looting and displacement challenges long-term planning
that is essential to agricultural development (Cox, 2012; Kelly, 2014; Verweijen &
Brabant, 2017). Furthermore, the collapse of transport infrastructure and disso-
lution of markets and have impeded the sale of produce with detrimental impacts
on farmers (Kelly, 2014; Schouten et al., 2022). Under the pressure of a rapidly
growing population and declining soil fertility, livelihood diversification has become
an important survival strategy (Cox, 2012; Vollset et al., 2020).

The relationships between mining and non-mining and less and more reliant
households revealed interesting characteristic differences. In accordance with the
idea of mining as a way to cope with economic distress (“pushing” people away
from farming) (Banchirigah & Hilson, 2010; Hilson & Garforth, 2012), we found
that households engaged in mining experienced less food deprivation, but that this
relationship faded for households that were more reliant on mining. These results
empirically underpin findings presented in previous studies that identified the spread
of artisanal mining as a symptom of the reduced viability of farming (Banchirigah
& Hilson, 2010; Hilson & Garforth, 2012; Kelly, 2014). The tendency also reflected
in the household interviews, where it was reported that more pests have lead to
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crop failures, and that the availability of agricultural land has decreased in recent
years. Shifting rainfall patterns have also begun to adversely impact planning in
the predominantly rain-fed agricultural production (Amani et al., 2022; Balasha et
al., 2023). Climate change is expected to continue deteriorating growing conditions,
as DRC is among the most vulnerable countries due to low adaptation capacities
(Batumike et al., 2022; Edmonds et al., 2020).

Although certainly extreme in the context of the eastern DRC, the inability of
smallholders to live off their land has been connected to the rise of artisanal mining
in several Sub-Saharan African countries, too, including Tanzania, Zimbabwe and
Guinea (Banchirigah & Hilson, 2010; Hilson & Garforth, 2012). De-agrarianisation
dynamics in which farmers abandon their land to work in mines have been ob-
served in several countries, including Tanzania, Zimbabwe and Guinea (Huntington
& Marple-Cantrell, 2022). In other regions, artisanal mining was portrayed as com-
plementary to farming (Hilson, 2016). In Sierra Leone, for example, mining is often
practiced during the dry season when agricultural labor demand is low (Carter &
Barrett, 2006), and in Mozambique and Ghana, miners have reported to reinvest
their revenues to enhance their agricultural productivity (Dondeyne & Ndunguru,
2014; Pijpers, 2014).

We did not identify a higher wealth in assets for more engaged miners, which
would be expected if higher income prospects drew people towards the mines. Given
that assets build up over a longer period of time, whereas mining engagement was
reported for the previous year only, increased income from mining may not immedi-
ately reflect in the measured wealth score of a household (Angelsen & Dokken, 2018;
Carter & Barrett, 2006). Further, the direction of the relationship is not obvious,
as it could also mean that asset-poor households were more likely to engage more
into mining, as implied in the analytical model presented earlier.

A few caveats should be kept in mind in the interpretation of the empirical
results. First, the geographic area covered by the study is relatively small and
the limits of their external validity should be recognized, especially beyond the
unique context of the eastern DRC. Second, as indicated earlier, the number of
observations and the structure of the data do not allow us to address causality. For
instance, it is not possible to disentangle whether more mining-reliant households
give up agricultural land or if land-poor households are more likely to develop a
higher dependence on mining. The analytical model helps to provide intuition and
it generally matches with the regression results, but does not ultimately resolve these
issues.

4.6 Conclusion

Artisanal mining has established itself as a widespread livelihood strategy in
eastern DRC, but has seen increasing attention in international policy debates for
its adverse social and environmental effects. Our analysis adds to the understanding
of motivations behind livelihood diversification through mining, acknowledging that
diversification comes in many forms and degrees. We point to important differences
between miners who only mine occasionally and those who seek it as a more regular
income opportunity. We found that livelihood diversification through mining can
work as an efficient gap-filler in reducing food insecurity and in reducing agricultural
dependency. Potential crowding-out of agriculture, however, only occurred among
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those who engage in mining on a regular basis throughout the year.
The artisanal mining sector in the DRC has been targeted with sectoral reforms

and supply chain policies to improve the conditions under which mining occurs,
especially the often precarious working conditions. Also, the environmental conse-
quences of artisanal mining start gaining attention among policymakers (Sonter et
al., 2018; World Bank, 2021). Policies aiming to improve livelihoods in rural East-
ern DRC need to address these sides of artisanal mining, while at the same time
keeping in mind that many people rely on it for their survival. The availability of
income alternatives can reduce the reliance on mining in the medium- to long-run,
but crucially requires the stabilization of the region that would give rural households
the needed securities to invest in long-term livelihood activities. With rebel groups
financing their warfare through minerals, mining is not only a consequence of con-
flict due to the unavailability of other income opportunities but also fuels it (Stoop
et al., 2019). The increasing destabilization of weather patterns as climate change
proceeds further deteriorates rural livelihoods, creating a complex set of challenges
that has no easy solutions.
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Appendix B

Descriptive statistics

Table 5.1: Differences in covariate means between mining and non-mining households

non-mining mining

Mean SD Mean SD Diff. in means SE

HH size 9.8 3.9 11.6 5.3 1.9** 0.6
Insufficient food 4.0 3.6 3.1 3.0 -0.9* 0.4
Cultivated area 1.0 1.5 1.1 1.4 0.2 0.2
LSU 0.2 0.5 0.4 1.4 0.3+ 0.2
Wealth score 2.0 1.1 2.2 1.2 0.2 0.2
Fallow years 1.5 1.5 1.6 1.3 0.1 0.2
Commerce income 0.2 0.4 0.1 0.3 -0.1* 0.0
Wage income 0.2 0.4 0.1 0.3 -0.1* 0.0
Timber income 0.2 0.4 0.1 0.3 0.0 0.0
Charcoal income 0.0 0.1 0.0 0.1 0.0 0.0
NTFP income 0.0 0.1 0.0 0.0 0.0+ 0.0
∗∗p < 0.01; ∗p < 0.05; +p < 0.1

Proofs

Equation 4.4 is obtained by solving the maximisation problem

V =
∑

i∈{m,f,o}

yi(Li, X)− ρ

2

∑
i∈{m,f,o}

y2i σ
2
i − δ(Lm, Lo) + λ[L̄− Lm − Lo − Lf ] (5.1)

where λ is the Lagrange multiplier.
From equation 5.1, and assuming interior solutions, the following first order

conditions can be obtained:

∂V

∂Lf

=
∂y

∂Lf

− ∂π

∂Lf

− λ = 0 (5.2)

∂V

∂Lm

=
∂y

∂Lm

− ∂π

∂Lm

− ∂δ

∂Lm

− λ = 0 (5.3)
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∂V

∂Lo

=
∂y

∂Lo

− ∂π

∂Lo

− ∂δ

∂Lo

− λ = 0 (5.4)

∂V

∂λ
= L̄− Lm − L0 − Lf = 0 (5.5)

We are mainly interested in the relationship between farming and mining. To
simplify the comparative statics, we ignore for the moment off-farm work. Solving
equation 5.2 for λ and inserting into 5.3 yields equation 4.4.

To obtain the relationship between mining diversification and farming risk, the
implicit function theorem (IFT) can be used as done in, for example, Bezabih &
Sarr (2012) :

∂Lm

∂σ2
f

=
− ∂V 2

∂Lm∂σ2
f

∂V 2

∂L2
m

=
− ∂π2

∂Lf∂σ
2
f

∂y2

∂L2
m
− ∂π2

∂L2
m
− ∂δ2

∂L2
m

> 0

(5.6)

From equation 4.3, it is easy to see that the numerator in equation 5.6 is nega-
tive, while the denominator is negative under the assumption that the second order
condition holds, i.e., that the solution is a maximum.

The relationship ∂Lm

∂X
is derived similarly. Using the IFT and equation 4.3, we

obtain:

∂Lm

∂X
=

−( ∂2y
∂Lm∂X

− ∂2y
∂Lf∂X

+ ∂2π
∂Lf∂X

− ∂2π
∂Lm∂X

)

∂V 2

∂L2
m

=
−((1− ρσ2

mym)
∂2ym

∂Lm∂X
+ (ρσ2

fyf − 1)
∂2yf

∂Lf∂X
− ρσ2

m
∂ym
∂X

∂ym
∂Lm

+ ρσ2
f
∂yf
∂X

∂yf
∂Lf

)

∂y2

∂L2
m
− ∂π2

∂L2
m
− ∂δ2

∂L2
m

=
−(( ∂π

∂yf
− 1)

∂2yf
∂Lf∂X

+ ρσ2
f
∂yf
∂X

∂yf
Lf

)

∂y2

∂L2
m
− ∂π2

∂L2
m
− ∂δ2

∂L2
m

(5.7)
The last step uses assumption 3.
The denominator is the same as in equation 5.6 and hence negative, while the

numerator is negative as long as ∂π
yf

< 1.

To obtain relation 4.6, the numerator in equation 5.6 would be:

− V 2

∂Lm∂ρ
= −(

∂π2

∂Lf∂ρ
− ∂π2

∂Lm∂ρ
)

= −ρ(σ2
fyf

∂yf
∂Lf

− σ2
mym

∂ym
∂Lm

)

(5.8)

where the second equality is established from equation 4.3. By assumption 1, it
then follows that ∂Lm

∂ρ
> 0.
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Spatial mobility

Kahuzi-Biega

Itombwe

Figure 5.1: Spatial connection between villages and the mining sites miners go to work.
Mining locations collected during field work and from IPIS. Forest extent as indicated in
data of Vancutsem et al. (2021).

References

Bezabih, M., & Sarr, M. (2012). Risk preferences and environmental uncertainty:
Implications for crop diversification decisions in ethiopia. Environmental and Re-
source Economics, 53 (4), 483–505. https://doi.org/10.1007/s10640-012-9573-3

Vancutsem, C., F. Achard, J. F. Pekel, G. Vieilledent, S. Carboni, D. Simonetti,
J. Gallego, L. E. O. C. Aragão, and R. Nasi. 2021. “Long-Term (1990-2019)
Monitoring of Forest Cover Changes in the Humid Tropics.” Science Advances
7 (10): 1–22. https://doi.org/10.1126/sciadv.abe1603.

https://doi.org/10.1007/s10640-012-9573-3
https://doi.org/10.1126/sciadv.abe1603


102 Appendix B



Paper III

”The idea of the preservation of scenery, flora, and fauna, in their nat-
ural state, which in itself is not at all new, is based in varying degrees
on two main objectives. As a secondary consideration, care is devoted to
the preservation of natural beauties from modern constructions, mostly
far from attractive in appearance, such as factories and advertisement
boardings. The main object, however is to prevent man, whose means of
transport and weapons of destruction increase in proportion to scientific
progress, from breaking up for his own temporary benefit the equilibrium
of the three kingdoms of nature.”

(Institut des Parcs Nationaux du Congo Belge, 1939)

”I will never leave this forest. This is not a park, this is our forest. The
Batwa were the first to live in this forest. My great grandfather died in
this forest. My father’s father died in this forest. And now my father
has been killed in this forest. I will die in this forest.”

(Indigenous Batwa quoted in Flummerfelt, 2022)
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Increasing pressure on protected areas in
the DR Congo over the last 20 years
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Abstract Protected Areas (PAs) are an essential element in strategies to con-

serve the Congo Basin rainforest. In the past, PAs in the Democratic Republic

of Congo (DRC) have been able to maintain most of their forest cover, pri-

marily due to their remote locations. As this passive protection is starting to

fade with the progression of the deforestation frontier, the future role of PAs

in conserving the Congo Basin rainforest is uncertain. Using a geographic

regression discontinuity design and a novel discontinuity-based typology to

categorise protection by its spatio-temporal context, the study investigates

dynamics of forest loss at PA boundaries and assesses their potential to with-

stand deforestation as anthropogenic pressures rise. On average, PAs have

deforestation sprawling in at 18% of their boundaries in 2022, and only 9%

have been able to actively contain it. In expectation of a rapidly growing

population and a renewed interest in the region’s resources from industrial

actors, more evidence on what works in conserving the rainforest of the DRC

without compromising local livelihoods is needed.

6.1 Introduction

The Congo Basin rainforest is a biodiversity hotspot, has important regulatory
functions for the regional and global climate and directly provides for the livelihoods
of millions of people (Eba’a Atyi et al. 2022b). Yet its extent continues to decrease,
mostly driven by the expansion of small-scale agriculture under a growing population
(Tyukavina et al. 2018; Masolele et al. 2024; Vancutsem et al. 2021). Conservation
hopes have largely relied on the extension of Protected Areas (PAs) coupled to the
ambition to designate 30% of land to conservation by 2030 (Hughes and Grumbine
2023). Today, already 15% of the global terrestrial area, and 14% of the Democratic
Republic of Congo (DRC), are under some form of protection (UNEP-WCMC 2022).
Assessing whether PAs are effective in protecting forests can be challenging, given
their non-random locations (Joppa and Pfaff 2009; Joppa and Pfaff 2010). PAs
tend to have higher forest cover not necessarily as a result of effective protection,
but rather their remoteness. This has been particularly the case for the DRC. Forest
conservation areas were often established in locations with low deforestation pressure
due to their inaccessibility (Joppa, Loarie, and Pimm 2008; Pfaff et al. 2014), and
thus have little additionality in avoiding deforestation.

Since conservation efforts in the DRC rely extensively on PAs, a crucial question
concerns their mitigation potential once remoteness fades and deforestation pressure
increases. For the last 20 years, scientists have been calling for better conservation
impact evaluation to understand what works in halting forest loss and what does
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not (Baylis et al. 2016; Börner et al. 2020; Ferraro and Hanauer 2014; Sutherland
et al. 2004). The call is emphasized by the apparent gap between available and
required conservation funding and a closing time window to act, making efficient
allocation of the resources available even more important (Ferraro and Pattanayak
2006). However, a systematic understanding of what works when remains thin,
especially in the Congo Basin (White et al. 2021).

In experimental settings, treatment can be assigned randomly to make treated
and controlled units comparable and thereby allow to infer causal effects. Given the
non-random location of PAs, it is necessary to control for confounding factors that
influence both, deforestation outcomes and protection status. Quasi-experimental
methods can implicitly control for confounders through the choice of the appropriate
empirical design (Jones and Shreedhar 2024). Which design is appropriate depends
on the research question, the context and the available data. For PAs, the main-
stream strategy to evaluate conservation effectiveness has become propensity score
matching, where protected areas are matched to non-protected areas based on a set
of ex ante and a priori defined observable characteristics to control for non-random
locations (Andam et al. 2008; Geldmann et al. 2019; Joppa and Pfaff 2010; McNicol
et al. 2023).

The findings of matching-type studies of PA effectiveness in the DRC are ambigu-
ous. Sze et al. (2021), Shah et al. (2021) and Abman (2018) found only marginally
lower deforestation within PAs compared to matched areas outside, while Bowker et
al. (2017) found substantially less forest loss under protection. However, matching
does not overcome bias from non-random location if variables that explain both de-
forestation and protection status are omitted, a condition which essentially cannot
be tested (Smith and Todd 2005). It can further run into problems when the com-
mon support, i.e. the overlap between propensity scores of treatment and control
groups, is poor (Börner et al. 2020).

This study takes a different approach to evaluating PA effectiveness by focussing
on frontier processes at their boundaries. Previous research has shown that defor-
estation outside of PAs is a strong predictor of forest loss inside (Burivalová et al.
2021). Most of the deforestation, in the DRC and beyond, occurs in the form of
expanding land use frontiers as a result of growing populations and resource extrac-
tion (Meyfroidt et al. 2024; Molinario et al. 2020; Shapiro et al. 2023). Frontiers
can be defined as ”places or regions with specific land-use dynamics, leading to the
rapid development of the exploitation of some land or resource, and that experience
marked social-ecological transformation accompanying and resulting from resource
exploitation.” (Meyfroidt et al. 2024). Agricultural expansion, mining and logging
are examples that can bring about such dynamics, but also the territorialisation of
conservation has been framed as a frontier process connected to fundamental social
and ecological transformation (Buchadas et al. 2022a; Meyfroidt et al. 2024). As
unexploited natural resources often coincide with critical ecosystems, PA bound-
aries can be locations of friction between conservation and other frontier dynamics
(Buchadas et al. 2022a; Luckeneder 2021; Simpson and Zirhumana 2021; Vuola
2022). On the one hand, the establishment of PAs can be a response to the ex-
pansion of deforestation frontiers - or at least a precaution against their future
emergence (Buchadas et al. 2022a). On the other hand, conflicting land uses may
also lead to degazettement and downgrading of existing conservation areas under
the pressure of other actors and interests, seen for instance in the cases of Virunga
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National Park and Salonga National Park for oil and gas explorations, and Itombwe
Nature Reserve following conflicts with local communities (Kujirakwinja et al. 2019;
Qin et al. 2019; Tesfaw et al. 2018).

Where land use rents and population densities are low, PAs maintain high forest
cover by virtue of their remote location (Pfaff et al. 2014). Protection in such
contexts has been described as passive protection (Joppa, Loarie, and Pimm 2008).
As the opportunity costs of forest cover or the need for more land under a growing
population increase, passive protection may turn into active protection in case a
PA is successfully holding back deforestation. While the distinction between passive
and active protection is a useful simplification, frontier processes often follow much
more complex spatio-temporal patterns that can give useful insights into the state
of forest conservation.

This study proposes a novel metric-based typology to assess the status of protec-
tion at PA boundaries of the DRC. In a geographic regression discontinuity (GRD)
framework, forest cover and deforestation on either side of PA boundaries are taken
into consideration to assess their potential of withstanding deforestation. It is fur-
ther analysed how this potential changes with the presence of other land use frontiers
in the form of industrial mining and logging concessions. Given that the remote-
ness of PAs will keep on fading and that signs of emerging commodity frontiers are
already revealing, it is concluded that conservation in the DRC is at a crucial point
in time with important implications for the future of the Congo Basin rainforest.

6.2 Conservation and other land use frontiers in

the DR Congo

The political turmoil the DRC has been going through over the last decades,
including two wars and persisting instability especially in the eastern part of the
country, has given rise to a fragile state with limited capacity of planning (Karsenty
and Ongolo 2012). This has also impeded conservation efforts in the country.

Market mechanisms aim at making it more profitable for land users to keep forest
rather than converting it. However, especially in settings where deforestation follows
to a large share subsistence needs and not profit maximisation, the effectiveness of
such instruments can be low (Angelsen et al. 1999). Pantropically implemented con-
servation initiatives that work with incentives, such as REDD+ (Reducing Emissions
from Deforestation and Degradation + other forest-based activities), have not fully
unfolded in the DRC, despite the formal joining of the program in 2009, as insti-
tutional shortcomings hinder the implementation and the capability to engage into
long-term anti-deforestation commitments (Karsenty and Ongolo 2012; Kengoum,
Pham, and Mihigo 2024; Pham et al. 2021).

Most forest conservation efforts in the DRC have concentrated on the establish-
ment of PAs. In line with the Kunming-Montreal Global Biodiversity Framework,
the ambition has been formulated to designate 30% of terrestrial land as protected
by 2030 (Convention on Biological Diversity 2022). The long history of PAs in the
DRC reflects the notion that the removal of people is essential to conserve forest.
Under colonial rule, authorities declared all unoccupied land as vacant and hence-
forth property of the state, on which they began to establish the first national parks
(Van Acker 2005; Inogwabini 2014). In 1973, the law was augmented under the
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Figure 6.1: Tropical moist forest biome coverage of the DRC and locations of PAs and
mining and timber concessions. Note that most of the concessions are inactive (see Section
3)

presidency of Mobutu who rendered all land, regardless of its tenure status, as state
property (Van Acker 2005). These laws provided the basis for the establishment of
numerous PAs, now counting a total of 60 and covering 15% of the country (World
Database on Protected Areas 2024).

In the process, communities were often displaced and prohibited from accessing
the forest, where necessary under the use of military force and without compensa-
tion (Flummerfelt 2022; Marijnen and Verweijen 2016; Domı́nguez and Luoma 2020;
Inogwabini 2014; Simpson and Geenen 2021). Local communities and indigenous
people who had lived inside the forests for centuries were removed from their an-
cestral lands under the legitimisation of forest protection, as happened in the case
of the Batwa in Kahuzi-Biega National Park. (Barume 2000; Simpson and Geenen
2021).

Whereas protection exists on paper, conservation impacts on the ground are not
obvious. Insufficient government funding and low legitimacy of PAs among commu-
nities impede the implementation (Inogwabini 2014). Programs to support commu-
nities and provide alternative livelihoods are also missing (Barume 2000; Spira et al.
2019). One way to compensate for the lack of funding and management capacities
of the state has been the installation of co-management schemes, in which inter-
national NGOs partnered with government agencies. Co-managed parks have been
found to increase avoided deforestation in the face of deforestation pressure (Des-
bureaux et al. 2025). However, only six PAs are currently managed collaboratively
in the country.



108 Paper III

Additionally, political priorisation appears to be a challenge, since conservation
status has not prevented the allocation of protected land to industrial mining and
logging concessions (Cirimwami, Baguma, and Mushagalusa 2021; Simpson and
Pellegrini 2022). The implications of industrial mining operations on conservation
areas are unreported this far (Cirimwami, Baguma, and Mushagalusa 2021). The
eastern part of the country, where many of the mineral deposits are located (Figure
6.1), has been suffering from insecurity for a long time, largely preventing mining
industry from setting foot and leaving most of the exploitation to artisanal and
small-scale producers (Draulans and Krunkelsven 2002; Kilosho Buraye, Stoop, and
Verpoorten 2017; Simpson and Pellegrini 2022). However, the industry’s interest in
the region re-surges (Geenen 2014; Kilosho Buraye, Stoop, and Verpoorten 2017;
Radley 2020), and concessions for exploration and exploitation activities have been
granted inside and outside of PAs alike.

Industrial logging concessions are only located in the western part of the coun-
try, where the Congo river is used to transport logs to the port (Ferrari and Cerutti
2023) (Figure 6.1). Compared to the neighbouring Congo Basin countries, timber
production in the DRC has been low (Eba’a Atyi et al. 2022b). A moratorium
issued in 2002 prohibited the signing of new logging titles while aligning the sector
to principles of good governance, although concessions were assigned illegally while
the moratorium was in force (Majambu, Demaze, and Ongolo 2021). The morato-
rium was accompanied by the adoption of a new forest code which obliged logging
companies to adhere to social and environmental principles in their operations, as
laid down in obligatory management plans (Majambu, Demaze, and Ongolo 2021).
While the government has signaled intentions of lifting the moratorium in the near
future, the implementation of management plans is still lagging behind (Chervier et
al. 2024; Global Witness 2018a; Karsenty et al. 2017).

Given the anticipated expansion of conservation, mining and logging frontiers in
the DRC, and the large overlap they have, the question of how these interact is cru-
cial, but not evident. On the one hand, extractive industry and conservation actors
may have synergistic interests of restricting territorial access for other actors, espe-
cially small-holder farmers and artisanal producers (Buchadas et al. 2022a; Geenen
2014; Tritsch et al. 2020; Vuola 2022). On the other hand, extraction itself requires
the removal of vegetation and the construction of infrastructure, thereby trigger-
ing even more deforestation by providing access to other actors and undermining
conservation agendas (Giljum et al. 2022; Kleinschroth et al. 2019).

6.3 Data

Forest disturbance data and data on remaining undisturbed forest was extracted
from the Tropical Moist Forest (TMF) dataset of Vancutsem et al. (2021). The
uniqueness of the TMF data is that it stores information on both deforestation and
degradation for the years 1990-2023. In the data, forest cover is determined with
the help of a procedural sequential decision tree. In comparison with other com-
monly used data sets, such as Hansen et al. (2013), TMF data does not rely on
tree cover quantification and loss thereof, but instead distinguishes undisturbed and
disturbed tropical moist forest, and other (non-forested) land cover. Undisturbed
forest is classified as that which has neither been degraded nor deforested over the
entire Landsat time series (i.e., since 1982), and forest disturbance marks the loss of
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canopy cover. Disturbances of high intensity or of a duration of more than 2.5 years
are classified as deforestation events, whereas low intensity and short duration dis-
turbances are classified as degradation. The focus of the TMF data on undisturbed
forest is especially useful in the DRC context, where fallow land during cycles of
shifting cultivation can quickly restore forest cover and easily be mistaken for forest
(Potapov et al. 2012). Further, TMF data reportedly performs better in detect-
ing disturbances than other frequently used datasets, such as that of Hansen et al.
(2013) (Vancutsem et al. 2021).

As an irreversible, binary outcome variable, pixel-level analysis of deforestation
can lead to bias in the estimation. The data was therefore aggregated from 30m to
500m resolution to obtain variation in the outcome variables (Garcia and Heilmayr
2024).

Shapefiles with the location of protected areas, mining and timber concessions
were accessed through the DRC Forest Atlas (Bélanger and Mertens, n.d.). All data
were clipped to the tropical moist forest biome, thereby excluding the Miombo dry
forest in the southern part of the DRC (see Figure 6.1). 36 of the 54 PAs were covered
at least partially by this area of which 6 did not have an IUCN classification reported
in the data. After consulting with experts from the DRC, one PA was dropped
for not having been established yet (Kibali-Ituri) and 3 missing IUCN categories
were assigned as category VI, leaving only two small-sized PAs unclassified (Kwada
and Mont Homas). For all PA boundaries within the tropical moist forest biome,
boundary points were placed every 15km, which were then used to estimate local
deforestation and forest cover discontinuities (see Methods section).

PAs with overlapping land use allocations were identified by overlaying mining
and timber concessions with PA boundaries. For mining concessions, 144 overlap-
ping boundary segements of more than 5km length were identified, of which 41 were
exploitation permits covering a total length of 639 km1. However, only one of these
mining concessions was hosting an operational mine: the Twangiza mine, operative
between 2012 and 2020 (Maus et al. 2022; Radley 2020). This mine was used as a
case study to see how forest cover discontinuities changed with the start of mining
operations.

Also logging concessions shown in the Forest Atlas were not all operative. A
moratorium on new logging titles in 2002 demanded concessions to have manage-
ment plans approved to get concession rights validated (Chervier et al. 2024; Ma-
jambu, Demaze, and Ongolo 2021). Among all validated and active concession
signed since then, four titles overlapping with the Oshwe Hunting Reserve and the
Tumba-Lediima Reserve were used as a case study for mining-logging frontier dy-
namics.

1The data on mining concessions from the DRC Forest Atlas (Bélanger and Mertens, n.d.) was
substantially more conservative than other data provided via Global Forest Watch. A comparison
with official maps displayed on the DRC Mining Cadastre portal suggested that the former was
more accurate and is therefore depicted in Figure 6.1.
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6.4 Methods

6.4.1 A protection typology

Theories on deforestation processes highlight the importance of the spatio-temporal
context in which a landscape is located to understand its land use trajectory (Meyfroidt
et al. 2024; Barbier, Burgess, and Grainger 2010; Angelsen 2007; Lambin and
Meyfroidt 2010). Once an area is deforested, forest has to regrow over a long time
period before it is fully recovered, which makes deforestation a quasi-irreversible
event (Garcia and Heilmayr 2024). Due to this absorbing property, the stage of
land use transformation a PA is situated in has decisive implications on conserva-
tion.

Boundary discontinuities alone cannot fully disclose frontier dynamics. The ab-
sence of discontinuities in deforestation across PA boundaries, for instance, can lead
to three different conclusions on protection effectiveness, depending on remaining
forest cover and previous dynamics. In the first case, discontinuities can be ab-
sent in case the deforestation frontier has not yet reached PA boundaries. Forest
cover would be high and deforestation low on either side of the boundary, and pro-
tection can be described as passive. In the second case, when deforestation has
already reached the PA, discontinuities would be absent if deforestation spreads
across boundaries and does not stop at PAs. Protection is then not able to stop
deforestation at the boundary and hence inefficient. A third case could arise when
forest is already scarce around PA boundaries and the deforestation frontier has
moved inside the PA. Again, no discontinuity in deforestation or forest cover would
be visible, but the context would be very different from the previous two cases.
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Figure 6.2: Metric-based typology of forest protection used to classify PA boundary
segments.

To account for the variety of contexts in which discontinuities may or may not
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appear, this analysis develops a novel typology of forest protection is conceptually
related to the forest transition theory (Barbier, Delacote, and Wolfersberger 2017;
Mather 1992), and to landscape-level typologies of land use change developed in
Buchadas et al. (2022b) and De Sy et al. (n.d.) (Figure 6.2). Data on remaining
undisturbed forest cover and the annual rate of forest disturbance on either side
of PA boundaries were used to identify the deforestation setting in which a PA
is situated in. Forest cover and deforestation metrics were determined in a data-
driven approach following interval classification methods adopted in Jamaludin et al.
(2022), categorising each side of PA boundaries according to low, medium and high
forest cover (<33.5%, 33.5-79%, >79%) as well as low, medium and high annual
deforestation (<0.5%, 0.5-2.5% and >2.5%), where deforestation is estimated as
the share of pixels that were cleared in a given year. Boundaries that already had
low forest cover in 1990 were discarded from the analysis, as forest cover might
be naturally low at these points. This also implies that points are excluded that
experienced extensive deforestation dynamics before 1982, i.e. the year of the first
available Landsat images. The metrics were then combined to analyse the type
of conservation frontier that was present at different PA boundaries. Alternative
threshold specifications were tested and are reported in the appendix, but did not
lead to notable differences in the results.

Based on the estimated discontinuities, PA boundaries were distinguished into
five different stages of protection. As PAs tend to be placed in remote locations,
protection in the first stage can be described as dormant. Similar to the first stage
in the forest transition theory (Mather 1992), forest cover is high and deforestation
low on either side of the boundary. When the deforestation frontier progresses
and reaches PA boundaries, the passive protection in the dormant stage fades, and
deforestation is either contained by PA boundaries with high deforestation outside
but low inside, or sprawling in case forest loss enters PAs, shown by high loss on
either side of the boundary. If deforestation enters PAs, it may be stopped before the
forest cover has fully disappeared, in which case deforestation has been consolidated.
Ultimately, if forest cover has already vanished both inside and outside the park,
protection is exhausted and has become locally redundant.

In the classification, forest loss is averaged over five years to smooth out annual
fluctuations. The categorisation ultimately allowed to distinguish the mechanisms
through which protected areas are associated with deforestation as either passive
due to remote location, active by enforcement of protection, or ineffective in cases
where protection does not contain deforestation.

Temporal information was used to determine how PA protection changed over
time. Under a functioning PA system, it would be expected that passive protection
from remoteness turns into active protection as the PA boundaries stop the forest
edge from moving inwards and resist anthropogenic pressures. However, if protection
was flawed, this would result in deforestation sprawling across boundaries and make
protection exist on paper, but without any conservation effects.

6.4.2 Geographic regression discontinuity design

To account for the non-randomness of PA locations (Joppa and Pfaff 2009),
this study used a geographic regression discontinuity (GRD) design for estimating
discontinuities of forest cover and forest disturbance along PA boundaries. The
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identification of causal effects in this GRD relies on the assumption that under the
same treatment status, potential outcomes on either side of the treatment cutoff are
continuous, i.e. that deforestation would not show a discontinuous jump across PA
boundaries in absence of protection (Keele and Titiunik 2015). Hence, all disconti-
nuities in relevant covariates across PA boundaries should be a result of treatment
itself for the design to be valid. Since the units of analysis are grid cells, and given
that geophysical features are often continuous across space (Figure 7.1 in the ap-
pendix), the main concern for the validity of the empirical strategy is that other
policy parameters change with protection status, so that the effect of protection
and that of other policies can no longer be separated. This is known as the problem
of compound treatment (Keele and Titiunik 2015). To avoid compound treatment,
PA boundaries overlapping with country borders were removed from the analysis,
as these have been shown to create discontinuities in forest cover due to differences
in policy environments (Wuepper et al. 2024).

The empirical strategy followed Keele and Titiunik (2015) by sampling points
along PA boundaries in the tropical moist forest biome of the DRC and non-
parametrically estimating local discontinuities for each point separately. Instead of
estimating only one treatment effect coefficient, as in the parametric case, a treat-
ment effect curve along PA boundaries is estimated. The individual boundary point
effects can then be aggregated into parameters of interest, such as effects by IUCN
category or average effects over all boundary points. In addition to its flexibility,
non-parametric regression has the advantage over linear regression that it is less
sensitive to the choice of bandwidth around treatment cutoffs (Wuepper and Finger
2022) and that it explicitly shows location-specific treatment responses (Keele and
Titiunik 2015). For this analysis, sampled points were placed every 15km along PA
boundaries, resulting in a total sample of 810 points. For each of these points and
all years between 2000-2022, local effects on forest cover, deforestation and forest
degradation were estimated.

Formally, the effect on a forest outcome Y at boundary point p in time t can be
written as:

τt(p) = lim
x→0+

E[Yt|X = x]− lim
x→0−

E[Yt|X = x] (6.1)

with x indicating the distance to boundary point p and Yt being the observed forest
outcome at time t. The limits from above and below the treatment cutoff at point
p are then estimates in a local linear regression following Keele and Titiunik (2015)
as follows:

µ+
t (p) =arg min

∑
i∈N+

(Yit − α+
p − β+

p f(i, p))
2wip

µ−
t (p) =arg min

∑
i∈N−

(Yit − α−
pt − β−

ptf(i, p))
2wip

(6.2)

N+ andN− refer to the neighbourhoods within the chosen bandwidth around bound-
ary point p, f(i, p) is a function to indicate the euclidean distance between observa-
tion i and p, and wi,p are spatial weights determined by a triangular Kernel weighting
function, with higher weights on observations in closer proximity to p.

The optimal bandwidth around p was calculated following the mean-square-
error optimal bandwidth selection of Calonico, Cattaneo, and Titiunik (2014) for
each point, and robust bias-corrected standard errors were reported as proposed in
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Calonico, Cattaneo, and Farrell (2021).

6.4.3 Difference-in-Discontinuities

In addition to PA boundary effects on forest loss, it was tested how mining and
logging concessions interact with the protection provided by PAs, in cases where
new titles overlapped with boundaries. This was done in a geographic difference-
in-discontinuities design in which the timing of a new land allocation was used to
compare discontinuities before and after the placement. Under the assumption that
the protection-impact remains constant over time, it can be estimated how mining
and logging concessions affected protection (Butts 2021; Grembi, Nannicini, and
Troiano 2019). Butts (2021) showed that, in absence of compound treatment and
sorting, the treatment effect can be recovered from the regression discontinuity of
the differenced outcomes as

τD = (Yt+s − Yt−1)
+ − (Yt+s − Yt−1)

− (6.3)

where t is the time in which a concession was placed on PA boundaries and s > 0.
Instead of the non-parametric approach from equation 6.2, a semi-parametric

estimation for the different PA boundary segments with overlapping concessions
was implemented, similar to that proposed in Dell (2010). The diff-in-disc resembles
Wuepper et al. (2024) and Baragwanath and Bayi (2020) in its functional form in
estimating the following regression separately for each year:

Ỹi = α + βdi + τDi + γb + δi + ϵi (6.4)

where Ỹi is the differenced outcome of cell i as specified in equation 6.3, di is a
cells distance to the PA boundary, Di is a treatment dummy indicating whether or
not cell i is inside a PA, γb are boundary segment fixed effects and δi controls for
longitude and latitude of a cell.

6.5 Results

The non-parametric GRD estimates for different boundary points were aggre-
gated in different ways to compute treatment effect parameters of protection. This
section first reports the aggregate results on the country level, before document-
ing heterogeneities by IUCN categories and by individual PAs. Finally, results at
overlapping mining and logging frontiers are reported.

6.5.1 Conservation performance of PAs in the DRC

Country-level discontinuities

Aggregated over all PAs in the DRC, estimates showed positive, statistically
significant and increasing discontinuities in forest cover across boundaries over time
(Figure 6.3a). Hence, forest cover outside of PAs generally declined at a faster rate.
While there was 3 percentage points higher undisturbed forest cover on the inside
of PA boundaries in 2000, this difference stabilised at around 4.2 percentage points
between 2015 and 2022, suggesting that on the aggregate level protection has some
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effect, but also that pressure on forests inside PAs has risen noticeably over the past
two decades.

In comparison, discontinuities in the annual rate of deforestation was negative in
16 out of the 23 years, but only statistically significant in the year 2016 (Figure 6.3b).
Meanwhile, discontinuities in annual forest degradation was significantly lower in 6
years and showed an overall larger discontinuity compared to deforestation results.
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Figure 6.3: Average regression discontinuities across PA borders aggregated from 811
non-parametric border point estimates within the tropical moist foret biome for a undis-
turbed forest cover and b deforestation and forest degradation. Positive estimates indicate
higher incidence within PAs. 95% confidence intervals from blocked bootstraps displayed.

Although the presence or absence of discontinuities can inform about the an-
thropogenic pressure that rests on PA boundaries, interpreting the effectiveness of
PAs in resisting these pressures requires additional context. A classification of PAs
according to the typology shown in Figure 6.2 gives more insights into the past and
present dynamics of forest loss in the immediate surroundings of PA boundaries.
It shows that the share of dormant protection, i.e. boundaries protected by re-
moteness, has decreased from 66% in 2002 to 55% in 2022 (Figure 6.4). Over the
same time period, the share of boundaries with contained deforestation increased
from 3% to 9%, and boundaries that have already exhausted their forest cover have
increased only slightly from 8% to 9%. The highest increase was seen for share of
boundaries with sprawling deforestation, i.e. where protection did not stop at the
PA boundary, as it increased from 7% to 18%.
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Figure 6.4: Classification of forest protection according to the typology presented in
Figure 2.

Conclusively, aggregated country-level effects suggest that the remoteness of PAs
in the DRC is gradually fading. As the deforestation frontier moves closer and
pressure on PA boundaries rises, only a minor share is able to contain pressure in
keeping deforestation out of the PAs. Most of the analysed boundaries were found
to give in to deforestation as it arrived at the boundary.

Heterogeneities across PAs

When aggregating forest cover discontinuities by PA, heterogeneities become
apparent (Fig 6.5). Focusing only on PAs that are not adjacent to country borders, 5
of the 19 investigated PAs had statistically significant discontinuities in undisturbed
forest cover in 2022. The highest discontinuity in 2022 was observed for the Tumba-
Lediima Reserve, with 10.8 percentage points higher forest cover inside, followed by
Kahuzi-Biega National Park with 8% and Tanya Nature Reserve with 6.9 percentage
points. The largest increases in forest cover discontinuity between 2012 and 2022
were found in Mangai, whereas the largest decrease was observed in Kahuzi-Biega
National Park.
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Figure 6.5: Discontinuities in forest cover across PA boundaries, by PA. Positive num-
bers mean higher forest cover inside the PA. Confidence interval displayed at 95%. Inflated
confidence intervals may be result of a low number of boundary points, and PAs with less
than 10 border point observations were entirely dropped. See Table 7.1 for details.

Applying the protection typology to the individual border points of each PA
shows more of these heterogeneities (Table 7.1 in the appendix). While some PAs
are not experiencing much deforestation pressure and have predominantly dormant
boundaries due to their remote location, others have already been deforested sub-
stantially around PA boundaries or are currently seeing extensive deforestation
sprawling inside. Of the 21 assessed PAs, 15 had at least some border point es-
timates with deforestation sprawling across boundaries, and 8 of them had at least
a quarter of all border points classified as sprawling.

On average, PAs with more than 10 boundary points had 17.5% of their bound-
aries classified as sprawling, with the highest share found in the Sankuru Nature
Reserve, followed by Yangambi and Virunga National Park 2. The larger National
Parks Maiko, Salonga and Lomami were almost exclusively characterised by dor-
mant protection. The highest share of contained deforestation was observed for the
Mangai Hunting Domain (27%), and the average across PAs was at 8.7% of border
points categorised as contained.

Heterogeneity by strictness of protection and other characteristics

PAs differ in the human activities they allow within their boundaries, reaching
from strictly scientific use to permitted resource extraction and land uses under
certain conditions. The strictness is indicated by the IUCN categorisation of a PA

2Since Virunga National is partially located outside of the tropcial moist forest biome and is
located adjacent to the Ugandan and Rwandan border in the east (Figure 6.1), only a fraction of
its boundary is assessed in this analysis to avoid compound treatment effects.
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(Stolton, Shadie, and Dudley 2013), although enforcement on the ground may differ.
The tropical moist forest biome of the DRC overlaps with 4 strict nature reserves
(IUCN category Ia), 1 wilderness area (Ib), 6 national parks (II), 12 habitat/species
management areas (IV) and 10 protected areas with sustainable use of natural re-
sources (VI).
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Figure 6.6: Discontinuities in a undisturbed forest cover and b deforestation, by IUCN
classification. All effects were aggregated from 809 individal boundary point estimates as
specified in Keele and Titiunik (2015), and standard errors derived from blocked bootstrap
procedure. Confidence interval displayed at 95%. Note that category Ia and Ib were merged
into one category to obtain more points, but still remained the smallest of the categories,
which might explain the large confidence intervals.

Comparing the discontinuities for PAs with different IUCN categories between
2012 and 2022, the largest forest cover discontinuities are found for PAs in cate-
gories II and IV (Figure 6.6a). National parks in category II are large areas that
are assigned to conserve large-scale ecosystem functionings and have frequently lead
to displacement among local communities during the establishment, as they foresee
strict prohibition of land-use and resource extraction from within park boundaries
(Stolton, Shadie, and Dudley 2013; Inogwabini 2014). Category IV PAs are par-
ticulary targetting the preservation of critically endangered or threatened species
and their habitats through interventions that are considered necessary to this end
(Stolton, Shadie, and Dudley 2013).

The largest change in discontinuity over the last 10 years was visible for cate-
gory VI PAs. These are explicitly allowing for traditional and cultural resource use
practises and aim to promote sustainable ways of forest use. Consequently, they
are also more likely to be established in areas where human-nature interactions are
more prevalent, which may explain increasing deforestation pressure in the form
of rising forest cover discontinuities. Discontinuities in deforestation over the last
years were less evident. On average, discontinuities in stricter PAs of category I
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were larger than in others, but estimates were statistically insignificant for the most
part throughout the different categories (Figure 6.5b).

In addition to forest cover and deforestation discontinuities for different IUCN
categories, it was tested how the typology categorisation varied by the strictness of a
PA (Table 7.3 in the appendix). With 77% of dormant border points, i.e. low forest
disturbance on either side, national parks of category II had the largest share of this
type in 2022. The lowest share was found for boundaries of nature reserves in IUCN
category IV, with 53%. Effectiveness of protection under deforestation pressure
was identified most frequently for strict nature reserves of category Ia and category
IV nature reserves, with 7.4% and 6.3% of contained boundaries, respectively. The
highest shares of boundaries with sprawling deforestation were found in strict nature
reserves (Ia, 19%) and category IV and VI PAs (both 14%).
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Figure 6.7: Covariate distribution by protection type and IUCN category for a distance
to nearest forest roads (Kleinschroth et al. 2019) and b number of conflict events within
10km of PA boundary since 2010 (Raleigh et al. 2010). Other covariate distributions are
reported in Figure 7.3 in the appendix.

To understand better how the protection performances of the different categories
related to geographic characteristics of their location, Figure 6.6 and Figure 7.3 in
the appendix depict covariate distributions by type of protection and IUCN cate-
gory. Unsurprisingly, dormant PA boundary segments tend to be located away from
forest roads (Kleinschroth et al. 2019) for all IUCN categories (Figure 6.6a). The
weakest link with remoteness was observed for PAs of category VI, where defor-
estation outside of PA boundaries also occurred a few kilometres away from roads.
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Across all IUCN categories, PA boundaries categorised as sprawling and exhausted
were in closest proximity to forest roads. These findings were mostly confirmed by
using data on accessibility (Weiss et al. 2018) and on roads (Meijer et al. 2018)
(Figure 7.3 in appendix).

Further, remotely sensed data from Slagter et al. (2024) on newly developed
forest roads since 2019 was used to show that 244km of new roads have been con-
structed within 5km of PA boundaries (Table 7.3 in the appendix). Of all PA
boundaries in proximity of new forest roads, 59% were classified as dormant in 2022
and 22% already as sprawling. This shows that the establishment of new roads in
the proximity of PAs continues to undermine protection efforts.

Another important factor in the assessment of PAs is the role of conflict. Conflict
can be caused by land use restrictions imposed through conservation and result
from the resistance against them (Inogwabini 2014; Pfaff et al. 2014). At the same
time, conflict leads to displacement and hardship, and has people turn towards the
forest in seek of shelter and resources (Merode et al. 2007; Nackoney et al. 2014).
ACLED data (Raleigh et al. 2010) shows that armed conflicts were predominantly
occurring close to the boundaries of category II PAs. Only dormant boundaries,
where anthropogenic pressure was low, did not have any noteworthy occurrence of
conflict events (Figure 6.7b).

The relationship between protection and collaborative governance of PAs was
evaluated using data from Desbureaux et al. (2025), who mostly distinguished PAs
governed in a co-managed or delegated way (Table 7.3 in the appendix). Among the
sample of PAs, only three were co-managed in collaboration of public authorities and
NGOs: Kahuzi-Biega National Park, Salonga National Park and Lomami National
Park. Results confirm Desbureaux et al. (2025)’s findings that co-managed parks
are predominantly located in remote areas with dormant protection. Only 4% of
boundary points in co-managed PAs were categorised as sprawling, and none were
found in PAs with delegated governance. While it is difficult to isolate the impact of
co-management from other confounders in this setting, such as the IUCN category II
that they all have in common or remoteness of their location, financial and technical
support can have positive effects on PA outcomes in cases where the weak state
capacity in the DRC hinders efficient PA management. Also other PAs not listed
in the database of Desbureaux et al. (2025) received funding and support from
both international and local NGOs to varying degrees, but the intransparency of
the allocation makes a more detailed analysis on the role of support challenging.

6.5.2 Overlapping land allocations

A large part of PA boundaries in the DRC are overlapping with logging and
mining titles. Although many of them are not yet productive, they have the poten-
tial of becoming extractive frontiers with both current and future implications for
conservation, for instance by adding more stress on existing pressures or creating
new pressures where none have existed previously. Contrarily, titles might as well
ease pressure by helping to enforce land use restrictions imposed through PAs, es-
pecially under weak institutions. Insights on where titles have been allocated can
help to contextualise the interactions of conservation-extraction frontiers and where
they are most likely to occur.

The protection type varies with the category of overlapping concession title (Ta-
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Table 6.1: Overlapping land allocations by concession title and type of forest protection.
Protection mechanisms are classified as displayed in Figure 6.2.

Frontier Dormant Contained Sprawling Consolidated Exhausted N

Mining concessions
Exploitation permit 46.67% 6.67% 20% 6.67% 13.33% 15
Research permit 59.62% 11.54% 11.54% 9.62% 7.69% 52

Logging concessions
Active 42.86% - 57.14% - - 7
Valid 66.67% 3.7% 14.81% 11.11% - 27
In process 78.57% 7.14% 14.29% - - 14

ble 6.1). The share of PA boundaries with sprawling deforestation is highest for
mining concessions under exploitation permit (27%) and active logging concessions
(57%), while dormant PA boundaries are most commonly located within valid -
but non-active - logging concessions (81%) and logging concessions that are still in
process of validation (79%). Consolidated frontiers were most prevalent in overlaps
with mining exploitation permits (20%), potentially a result of the exclusionary
practises of extractive industry that drives out other actors. This has for instance
been documented in the case of the Twangiza mine in the South Kivu province, the
only operative industrial-scale mine in the DRC whose concession was overlapping
with a PA in recent years.

Case study I: Twangiza mine

Despite the large area of mining concessions, only three industrial-scale mines
in the eastern DRC were operative in recent years, of which only the Twangiza
mine in South Kivu is located in a concession that overlaps with a PA, the Itombwe
Nature Reserve (Radley 2020; Maus et al. 2022). To analyse the potential impact of
industrial mining operations in proximity of PAs, a Diff-in-Disc model is estimated
close to the Twangiza mine. The mine itself is located 6 km outside of the Itombwe
Nature Reserve and was operative between 2012 and 2020, while the concession
granted to the company also spans inside the reserve (Radley 2020; Maus et al.
2022) (see Figure 7.4 in the appendix).

Before applying for exploitation permits, mining actors are given exploration
rights to scout the territory. For the Twangiza mine, the company Banro started
exploration in 2005 that lasted five years. After receiving an exploitation title,
Banro identified 2,000-2,500 people living inside the concession for relocation, and
prohibited communities from building new constructions and from cultivating fields
(Geenen and Claessens 2013). An agreement for replacement and compensation
was signed in 2010, although concerns about the legitimacy of the agreement and
its compliance were raised. The production of the mine started in 2012 (Geenen
and Claessens 2013; Radley 2020).
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Figure 6.8: Difference-in-Discontinuity estimates over time, normalised around the year
before mining began. Discontinuities were estimated in a semi-parametric model around
the affected PA boundary segment, with covariates controlling for longitude and latitude.
4634 observations to the left and to the right of the cutoff. Confidence interval displayed
at 95%.

Diff-in-Disc estimates for the PA boundary segment that lies within the mining
concession have been relatively constant during the exploration phase for the Twan-
giza mine (Figure 6.8). However, after the replacement of communities and with the
beginning of the production phase, forest cover outside - where the mine is located -
started to diminish at a faster rate. The trend in forest loss inside the nature reserve
has not changed in a meaningful way at any stage of the establishment of the mine.

Given that the Itombwe Nature Reserve entered a participatory process of regazetting
its boundaries in 2010-2014 (Kujirakwinja et al. 2019), an additional analysis was
conducted for the initial boundaries. When first established, the boundaries of the
nature reserve were never fully recognised by local communities, and results accord-
ingly do not show significant changes in the discontinuities over time (Figure 7.4 in
the appendix). However, it cannot be excluded that the change in discontinuities at
the redrawn boundaries during the production phase is influenced by the regazetting
process.

Case study II: Logging concessions inside Tumba-Lediima Reserve and
Oshwe Hunting Reserve

Despite the lasting 2002 moratorium on new logging concessions in the DRC, the
government has been granting new logging titles starting in 2011. Under the forest
code of 2002, all logging companies were obliged to submit management plans for
their concessions the latest five years after issue. The plans involved commitments
of sustainable harvesting and social benefits for residential communities, although
their implementation is often flawed (Karsenty et al. 2017; Global Witness 2018a).
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Overlap of concessions with PAs was observed particularly in three PAs: Tumba-
Lediima (IUCN category IV), Oshwe (category VI) and Rubi-Tele (category VI).
Given that, according to the data, Rubi-Tele only had concessions assigned in 2020,
the analysis of overlapping logging-conservation frontier dynamics focuses on the
former two.

As the earlier analysis in Figure 6.7 showed, the Oshwe Hunting Reserve and
the Tumba-Lediima Reserve both indicated positive discontinuities in forest cover at
their boundaries in 2022, although Oshwe Hunting Reserve only insignificantly. Each
had two overlapping concession titles assigned in 2011 and one in 2014. However,
one concession in each PA did not show signs of actual logging activities by 2018
(Global Witness 2018b), leaving a sample of four overlapping boundary segments
(see Figure 7.5 in the appendix).

Among these overlapping concessions, an investigatory report by Global Witness
showed that only one had their management plan approved by 2019 and did not
harvest timber outside of the designated annual harvest area (concession 035/11 in
Figure 6.9a). One concession had an approved management plan, but did not restrict
itself to operating within the designated perimeter (concession 039/11, Figure 6.9b).
Finally, two of the logging concessions had no approved management plan by 2019
but showed signs of logging activities regardless (concessions 020/11 and 015/11,
Figure 6.9c and d).
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Figure 6.9: Difference-in-Discontinuity estimates over time, normalised around the
year prior to forest concession assignment. Confidence intervals displayed at the 95%
level. Concessions displayed in a and c are located in Oshwe Hunting Reserve, b and d in
Tumba-Lediima Reserve.

The discontinuities in forest cover followed different trajectories for the four con-
cessions (Figure 6.9). Concessions 020/11 and 015/11 did not reveal any noteworthy
changes in forest cover discontinuity over time, regardless of the concession title as-
signment in 2011 (Fig 6.9c,d). The two concession with positive change in forest
cover discontinuity after the title had been granted were concession 035/11 and
039/11, both of which had an approved management plan (Global Witness 2018b)
and could thus indicate a positive interaction effect between well-managed logging
concessions following the sustainable practises outlined in the management plans
and conservation areas. However, when also considering the trajectory of forest
cover extent inside and outside of PA boundaries, both concessions in fact show a
drop in forest cover on either side as concessions were assigned, with a larger drop
outside compared to inside. Hence, the increase in discontinuities was not associated
with a decrease in deforestation inside the PAs due to better enforced protection,
but rather a relatively stronger increase in forest loss outside.
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6.6 Discussion

6.6.1 Remoteness protects, but is fading

Protected areas in the DRC stand at a crossroads. So far, protection has relied
largely on remoteness (Joppa and Pfaff 2009). Although remoteness still plays an
important part, the results presented in this study show that it has started to fade,
and anthropogenic pressures on the PA system of the DRC are rising. Discontinuities
in forest cover have been increasing to now 4% percent more undisturbed forest
cover across boundaries on average, implying higher forest disturbance outside of
PAs compared to inside over the last two decades.

A positive finding is that, even in a country with such fundamental institutional
shortcomings as the DRC, not all PAs are conclusively inefficient. In 2022, 8% of
investigated boundary points actively contained deforestation outside of the PA.
However, twice as many have not succeeded in stopping deforestation at PA bound-
aries once the frontier arrived, casting doubt on this currently dominant conservation
strategy. These results are coherent with findings by Burivalová et al. (2021) that,
once the deforestation has arrived at PA boundaries, it is likely to spread inside.

In line with previous studies, results highlighted the role that forest roads play
in attracting deforestation (Kleinschroth et al. 2019) and in weakening protection
attempts. Most PA boundaries exposed to deforestation were located in close prox-
imity to forest roads, and this exposure has further increased in the recent past as
new forest roads are established (Slagter et al. 2024). With the anticipated growth
in logging operations once the current moratorium on logging concessions ceases,
pressure on PAs in the DRC will further increase.

Differences between IUCN categories

Previous studies have indicated that stricter protection does not necessarily lead
to better conservation outcomes in terms of avoided deforestation (Ferraro et al.
2013; Pfaff et al. 2014; Elleason et al. 2021). One explanation for this observation
is that stricter PAs tend to be located in more remote places where land use frictions
and anthropogenic pressures are low (Ferraro et al. 2013; Pfaff et al. 2014). This is
also in line with the finding that stricter category II PAs had the highest share of
dormant protection among all IUCN categories.

Additionally, strict PAs are more likely to induce conflict over the use of land
under protection and its resources (Ferraro et al. 2013). Acknowledgment by local
communities is important for PAs to function, as for instance seen in the case of
the indigenous Batwa in Kahuzi-Biega National Park. After initially having been
forcefully removed from the park, the Batwa reoccupied a part of the park, with
devastating impacts on its forest cover (Simpson et al. 2025). The findings in this
study show that category II PAs were indeed associated with significantly more con-
flict incidences at their boundaries than other PAs that allow for certain forms of
land use, underpinning this connection between strictness and conflict. Even among
multiple use PAs, the degree to which communities were consulted in the implemen-
tation process can vary substantially, with implications on the social acceptance of
installed land use rules (Pfaff et al. 2014).

Given the differences in location and the fact that GRD estimates are local to
specific PA boundary segments, it is difficult to draw conclusions on comparative
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conservation performances of different IUCN categories when deforestation pressure
rises. However, results presented in this study did show some interesting differences
between the categories. One notable observation was that road access was particu-
larly closely associated with sprawling boundaries of strictly protected category II
national parks, although they also increased the likelihood of deforestation entering
PAs with less stringent protection to a lower degree.

Co-management and delegated management of PAs have previously been found
to increase the effectiveness in avoiding deforestation, but are found mostly in re-
motely located national parks under strict protection (Desbureaux et al. 2025).
Given the dire need of funding and other kind of support for the PA system of the
DRC, extending funding and collaborative management to less strict PAs with sus-
tainable use could help to navigate land use frictions and offer support to the places
facing the highest pressure (Buřivalová and Rakotonarivo 2025).

Looming mining and logging frontiers

Early signs of emerging land use frontiers in the form of concession title ac-
quisitions represent another looming threat to protected forests in the DRC, with
largely unknown implications at this point (Chervier et al. 2024; Meyfroidt et al.
2024; Radley 2020; Weng et al. 2013). So far, most of the granted mining titles
are not operative, and only 55% of the timber concessions are productive with low
harvest numbers compared to sectors in the neighbouring Congo Basin countries
(Eba’a Atyi et al. 2022a). However, a substantial overlap between concession ti-
tles and PAs exists, frequently located at PA boundaries where deforestation has
not reached yet. This coincidence of resource extraction and conservation frontiers
will grow even stronger under the adopted Kunming-Montreal Global Biodiversity
Framework aimed at declaring 30% of terrestrial area as protected by 2030 (Con-
vention on Biological Diversity 2022). Given that the establishment of resource
frontiers commonly requires infrastructural development (Meyfroidt et al. 2024;
Slagter 2024), their emergence is likely to draw in other deforestation actors with
potentially devastating impacts on intact forest landscapes and their biodiversity
(Kleinschroth et al. 2019; Ladewig et al. 2024; Laurance, Sayer, and Cassman 2014;
Weng et al. 2013).

Although first evidence on interaction effects between resource frontiers and land-
based conservation in the DRC were provided in this study, more research is needed
to generalise findings and account for the complex land use interactions in these pro-
cesses (Meyfroidt et al. 2024). In principle, concessions can be understood as land
titles, which have shown ambiguous effects on deforestation (Börner et al. 2020).
Titles define access rights and can thereby exclude outside actors from engaging in
deforestation, especially in the context of the DRC where institutional capacity to
enforce conservation is low (Abman 2018). This has for instance been observed dur-
ing the establishment of the Twangiza mine in eastern DRC, when artisanal miners
and communities were removed from the mining concession area (Geenen 2014), al-
though associated with counterproductive conservation outcomes at PA boundaries.

A similar logic was adopted to analyse logging concessions in other Congo Basin
countries and in the Peruvian Amazon (Rico-Straffon et al. 2023; Tritsch et al.
2020). Findings from this study do not provide evidence for positive interaction
effects of logging concessions and PAs on forest cover, with increased loss after
concessions were established in two of the four analysed cases. Although the sample
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is too small to interpret findings as conclusive evidence, and a precise timeline
of events in the establishment process of concessions is missing, they hint at the
importance to insist on sustainable and lawful practises in the timber sector of
the DRC. In neighbouring Congo Basin countries, certified concessions and those
operating under management plans were found to have a much lower toll on forest
cover (Tritsch et al. 2020). Further, the closing of abandoned logging roads is
important, as the remaining infrastructure can leave scars in the forests that remain
long after logging operations have ceased and is subsequently used by other actors
to clear forest (Chervier et al. 2024; Kleinschroth et al. 2019; Potapov et al. 2017).

6.6.2 Limitations

A limitation in assessing PAs in a close environment around boundaries is the
potential of leakage (Andam et al. 2008; Pfaff and Robalino 2017). Leakage may lead
to to increased forest conversion outside of PAs as a consequence of restrictions posed
on land use inside. Given that the GRD estimates are local to a close neighbourhood
around PAs, they are more sensitive to be impacted by such spillovers than other
methods. Although a relocation of deforestation from inside to the outside of PAs
would inflate discontinuity estimates, it can also be interpreted as a consequence
of effective protection. The typology developed in this study explicitly takes into
account dynamics on either side of the boundaries and thereby helps to assess the
effects of protection even if a part of the deforestation has been relocated to the
outside of PAs. Quantifying leakage effects themselves is challenging, as it requires
precise knowledge of their spatial extents to separate them from other dynamics
(Pfaff and Robalino 2017), and is thus beyond the scope of this study.

A different problem concerns the use of PA boundaries as the treatment-defining
cutoff in the regression discontinuity design. Although boundaries appear on maps,
they may not always be visible on the ground, especially in remote locations. In
such cases, no discontinuity in deforestation would be expected, and PAs would thus
be assessed as inefficient in resisting deforestation pressure. A larger conceptual
problem are shifting boundaries. Especially when frictions exist with other land
uses, PA boundaries can get regazetted, as it happened for instance in the case of
the Itombwe Nature Reserve after its initial establishment in 2006 (see Figure 7.4)
(Kujirakwinja et al. 2019). In such cases, estimates for the wrong boundaries can
make PAs appear inefficient although they were in fact only evaluated in the wrong
locations. Besides the Itombwe Nature Reserve, no such instance since 2000 are
known to the author, but information can be scarce and not readily available.

Finally, it should be noted that effectiveness of PAs is only evaluated based on
forest cover loss in this study. It therefore does not account for other anthropogenic
activities that cannot be as readily detected from satellite images but still compro-
mise forest integrity. Defaunation, for instance, can be a disconnected and severe
issue (Sagar et al. 2023). Also socio-economic implications of conservation were
not considered in this analysis, but are important to take into account when assess-
ing the eligibility of PAs to prevent deforestation given restrictions they pose on
adjacent communities (Burivalová and Rakotonarivo 2025).
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6.7 Concluding remarks

Previously, forest protection in the DRC has been known to rely largely on the
remoteness of its PAs. In this study, a new typology of protection was developed
to classify the activeness of the deforestation frontier at PA boundaries and their
potential to resist it. The findings revealed that, in fact, the pressure on PAs
along their boundaries has been increasing substantially over the past 20 years.
While some PAs were able to withstand the pressure so far, twice as many did not
succeed in keeping deforestation from entering inside. Especially in the later decade,
these dynamics have further been accompanied by a renewed interest in the natural
resources of the DRC by extractive industries, as seen through the acquisition of
numerous concessions for timber and mineral extraction that coincide with PAs in
many places. In the light of these developments, the conservation of the Congo
Basin rainforest in the DRC is located at a crossroads: continuing on the path of
protection-by-exclusion hoping to keep the deforestation front away from core forest
areas, or adopting a new conservation paradigm in which communities are included
in conservation planning and practise.

In the DRC, the large part of deforestation is not commodity-driven, but caused
by small-scale rotational agriculture for subsistence consumption (Shapiro et al.
2023; Tyukavina et al. 2018). The increasing need for land is a result of a rapidly
growing population that needs to support itself (Ernst et al. 2013; Molinario,
Hansen, and Potapov 2015). Forest conservation strategies aimed at excluding com-
munities from using the land may thus not be a lasting solution to halt deforestation.
Instead, incorporating them in conservation strategies can provide more stable and
inclusive ways to strengthen the resilience of both communities and conservation
initiatives, especially in a context where the state does not have the capacity to
provide alternatives (Berkes 2007; Hajjar et al. 2021). Attempts in recent years to
give stronger agency to communities, for instance by legally enabling the creation of
community forests since 2016 or allowing stronger community participation in PA
establishments, are steps in the right direction, but also depend on the institutional
setting (Lucungu et al. 2022; Kujirakwinja et al. 2019; Campos-Silva et al. 2021).
Today, community forests in the DRC still face implementation challenges to be-
come a viable alternative (Lescuyer et al. 2019), and further research on impacts
and obstacles are urgently needed to understand the potential of creating win-win
situations.

Data availability The data for the replication of the statistical analyses are avail-
able under https://github.com/maladewig/PAs_DRC.
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Appendix C

Continuity of covariates

A common test for the validity of the GRD is to assess whether geographic
covariates are continuous across treatment thresholds, such that treatment was not
assigned based on certain geographical features. As the figure beneath shows, there
are no discontinuous changes for terrain slope, altitude, precipitation or temperature
across PA boundaries.
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Figure 7.1: Discontinuity plots around PA boundaries for different geophysical charac-
teristics. All variables are taken from the Global Agro Ecological Zones (GAEZ) model
(Fischer et al. 2021). Temperature, Precipitation and Growing Degree Days represent
annual means.

Pre-establishment discontinuity estimates

By testing for discontinuities existed prior to the establishment of PAs, it is
possible to assess whether the observed differences in forest cover across thresholds
have already existed before protection (Keele et al. 2017). Tanya Nature Reserve
and Yangambi Biosphere Reservewere indicated in the data as established after
2000, but in fact had existed already before with different IUCN status and were
therefore excluded. Of nine remaining PAs established after the year 2000, only
Tumba-Lediima had a statistically significant discontinuity in forest cover already
before PA establishment.
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Figure 7.2: Forest cover discontinuities across PA boundaries one year prior to PA
establishment for PAs established after 2000. Confidence interval displayed at 95%.
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Protection type by PAs

Table 7.1: Share of boundary points with different conservation frontier types by PAs in 2022 for PAs with more than 10 observations

Name IUCN Area (km2) Contained Dormant Exhausted Sprawling Consolidated N

Domaine de chasse d’Oshwe VI 1692.482 0.08 0.62 0.00 0.28 0.03 39
Domaine de chasse de Bili-Uéré VI 3273.280 0.07 0.29 0.07 0.14 0.43 14
Domaine de chasse de Mangai IV 1194.843 0.27 0.09 0.27 0.36 0.00 11
Parc national de Lomami II 887.522 0.00 1.00 0.00 0.00 0.00 39
Parc national de la Maiko II 1052.867 0.00 0.96 0.00 0.00 0.04 52
Parc national de la Salonga II 1714.055 0.03 0.90 0.00 0.00 0.06 63
Parc national de la Salonga II 1622.774 0.02 0.89 0.00 0.02 0.07 56
Parc national des Virunga II 782.642 0.16 0.19 0.19 0.40 0.07 43
Parc national du Kahuzi-Biega II 673.086 0.16 0.47 0.04 0.20 0.13 45
Réserve des primates de Kisimba-Ikobo IV 97.041 0.19 0.56 0.00 0.00 0.25 16
Réserve naturelle d’Itombwe IV 571.789 0.19 0.28 0.19 0.28 0.06 32
Réserve naturelle de Tayna IV 89.967 0.07 0.86 0.00 0.00 0.07 14
Réserve Tumba-Lediima IV 746.268 0.16 0.48 0.00 0.19 0.16 31
Réserve de biosphère de Yangambi Ia 223.108 0.08 0.46 0.00 0.46 0.00 13
Réserve de chasse de Rubi-Télé VI 1127.300 0.03 0.86 0.00 0.05 0.05 37
Réserve de faune à okapis IV 1393.957 0.13 0.74 0.04 0.02 0.06 47
Réserve forestière de Lomako-Yokokala IV 362.822 0.00 0.88 0.00 0.12 0.00 17
Réserve naturelle de Ngandja IV 387.060 0.06 0.11 0.50 0.33 0.00 18
Réserve naturelle de bonobo de Kokolopori IV 374.085 0.00 1.00 0.00 0.00 0.00 13
Réserve naturelle du Sankuru IV 2664.194 0.05 0.33 0.05 0.53 0.05 43
Réserve naturelle du triangle de la Ngiri IV 523.505 0.08 0.04 0.29 0.29 0.29 24
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IUCN heterogeneity
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Figure 7.3: Covariate distribution by IUCN category for a Agricultural suitability (Fis-
cher et al. 2021), b travel time to nearest city (Weiss et al. 2018), c distance to roads
(Meijer et al. 2018) and d altitude (Fischer et al. 2021).
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Metrics for protection typology

The classification into protection typology followed metrics derived from a jenks
classification algorithm. The resulting threshold metrics were similar to a those
obtained in Jamaludin et al. (2022). To test the sensitivity of the classification
results to the specified metrics, thresholds used in Buchadas et al. (2022) and De Sy
et al. (n.d.) were used. Buchadas et al. use 10% and 55% thresholds to distinguish
low and high forest cover, but apply them to tropical dry woodlands which generally
have lower forest cover density. De Sy et al. (n.d.) apply 15% and 50% thresholds
in their application to tropical moist forests, but these thresholds are originating
from a country-level study by Pendrill et al. (2019) and need to be treated with
caution when applied to a finer landscape-scale.

For distinguishing high and low deforestation, Buchadas et al. (2022) used 0.6%
of annual converted land cover as a threshold, and De Sy et al. used 0.37%.

Comparing classification of border points for the year 2022 for the different met-
rics, only minor differences are visible for consolidated and sprawling categories.
Whereas Buchadas et al. (2022) metrics resulted in 8% consolidated boundary
points and 12% with sprawling deforestation, a classification following De Sy et
al. found 4% and 15%, respectively (Table 7.2).

Table 7.2: Conservation frontier typology classification with threshold metrics of
Buchadas et al. (2022) and De Sy et al. (in preparation) in comparison.

Category shares in
2022

Buchadas et
al. (2022)

De Sy et al. (in
preparation)

Jenks clustering
intervals

Dormant 0.66 0.65 0.61
Contained 0.06 0.07 0.08
Consolidated 0.08 0.04 0.08
Sprawling 0.12 0.15 0.16
Exhausted 0.08 0.08 0.07
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Characteristics of protection types

Table 7.3: Characteristics of different types of conservation frontiers in 2022 classified
according to Figure 2 in the main document. Exposure to new logging roads established
after 2019 was calculated based on data from Slager et al. (2024), and governance type
was determined from Desbureaux et al. (2025). Row sums with shares do not add up to 1
due to unclassified boundary points.

Consolidated Contained Dormant Exhausted Sprawling Points (#)

IUCN cate-
gories

Ia 0.04 0.07 0.70 – 0.19 27
II 0.04 0.04 0.77 0.02 0.08 325
IV 0.11 0.06 0.53 0.10 0.14 288
VI 0.13 0.03 0.61 0.09 0.14 115

Accessibility (h
to city)

7.11 4.75 15.85 4.6 4.21 –

Altitude (m) 757.62 1110.22 632.95 930.43 1053.5 –

Logging road
distance (km)

6.02 3.91 12.96 6.73 2.24 –

New forest road
w/in 5km

No 0.09 0.05 0.65 0.06 0.11 714
Yes 0.06 0.04 0.59 0.02 0.22 51

Road distance
(km)

8.06 9.32 15.1 9.3 6.36 –

PA governance
type

co-managed 0.04 0.03 0.85 0.01 0.04 221
delegated 0.15 0.02 0.81 – – 48
other 0.10 0.06 0.53 0.09 0.16 496

Overlapping extractive frontiers

Given that the Itombwe Nature Reserve was first established in 2006 by minis-
terial decree, but entered a participatory mapping process for redrawing the bound-
aries in 2010-2014 in response to resistance by local communities and international
NGOs (Kujirakwinja et al. 2019). Therefore, the analysis in Figure 6.8 was rerun
for the former boundaries of the reserve, although they were never accepted by local
communities.
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ba

Figure 7.4: a Dif-in-Disc estimates for previous Itombwe Nature Reserve boundaries.
Purple line indicates forest cover outside, green inside. b Map with the location of the
Twangiza mine and concession, as well as old and new boundaries of the Itombwe Nature
Reserve.

Figure 7.5: Map with the location of selected logging concessions around a Tumba-
Lediima Reserve and b Oshwe Hunting Reserve. Displayed logging roads from Kleinschroth
et al. (2019) and newly constructed forest roads from Slagter et al. (2024).



150 Appendix C

Software

The analysis was conducted in R version 4.4.2, using mainly the packages “tidy-
verse”, “terra” and “rdrobust”. Some adapted code chunks were used from the
package “SpatialRDD”, and jenks interval classification for deriving forest cover
and deforestation thresholds was done with the package “classInt”. The R script
was partially executed on the ORION high performance cluster of the Norwegian
University of Life Sciences.
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