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Abstract1 

We analyse the consequences of carbon price heterogeneity on households in The EU from 2010 to 

2020. Accounting for both heterogeneity in carbon pricing across emission sources and the indirect 

effects from inter-industry linkages, we obtain two key findings. First, due to widespread carbon 

pricing exemptions, household burdens are lower than previously estimated. Second, lower-income 

groups are affected disproportionately, because they spend a smaller share of their expenditure on 

products that benefit from exemptions than their higher-income counterparts. Therefore, imposing 

uniform carbon prices both within and across countries would reduce carbon pricing regressivity on 

household expenditure in the EU. A global price would be most effective in this regard, as it would 

raise carbon prices embodied in EU imports. Further, because EU economies are open and apply 

higher average carbon prices than their trade partners, the domestic revenues exceed the costs 

embodied in EU household consumptions bundles. This increases the scope for reducing the burden 

of carbon pricing on lower-income households through revenue redistribution. Our results imply that 

the ongoing extension of carbon pricing to more sectors through the EU ETS II and the introduction of 

the EU’s CBAM should make carbon pricing less regressive, all else equal. 
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1. Introduction 

Achieving the goal of the Paris Agreement requires significant reductions in global greenhouse gas 

(GHG) emissions. Economists have long recommended pricing GHG emissions as an environmentally 

effective and economically efficient climate policy instrument (Tirole, 2012). Accordingly, several 

jurisdictions have introduced carbon pricing mechanisms, although rarely at a rate consistent with 

estimates of the social cost of carbon (Hsiang et al., 2017; Rennert et al., 2022; U.S. EPA, 2023) or with 

levels needed to achieve the goals of the Paris Agreement (CPLC, 2017; Rogelj et al., 2018).2 

Furthermore, carbon pricing mechanisms in place to date continue to elude more than three quarters 

of global GHG emissions (World Bank Group, 2023) and have come with sector or fuel exemptions and 

price rebates that have dampened the marginal and average price signals faced by emitters across 

sectors (Dolphin et al., 2020; Finch & van den Bergh, 2022).  

One reason for carbon price heterogeneity across emission sources within jurisdictions is the—

perceived or actual—heterogenous impact of uniform pricing on firms and households (Douenne & 

Fabre, 2022), which may trigger political resistance from the most affected and politically organized 

ones among them, forcing governments to accommodate lower prices on their emissions (Cullenward 

& Victor, 2020; Olson, 1965; Stigler, 1971; Tavoni & Winkler, 2021). The dynamics of perceived and 

actual incidence of carbon prices are particularly relevant within countries because, in democracies, 

they affect support for climate policy and ultimately determine their odds of implementation. 

Incidence and distributional impacts of carbon pricing have been subject to much academic and policy 

interest (reviewed by Maestre-Andrés et al., 2019). Recent reviews suggest that carbon pricing 

mechanisms have a regressive impact when looking at expenditures in developed countries—low-

income households tend to be hit harder than high-income ones (Boyce, 2018; Peñasco et al., 2021), 

unless when revenues are redistributed in a way that mitigates this impact.  

Most investigations to date have not considered that the scope of implemented policies differs across 

sectors and/or fuels. In most cases, studies on the distributional impacts of carbon pricing have either 

only considered a single sector (e.g. Andersson & Atkinson, 2020), or assumed a uniform price across 

all sectors (e.g. Feindt et al., 2021; Fremstad & Paul, 2019; Goulder et al., 2019). Assuming a uniform 

price is particularly suited to forward looking simulations of ideal-world policy scenarios. Less 

empirical work has examined within-country price heterogeneity issues, even though these are 

recognized as a gap in the research on the socio-economic impacts of climate policy and 

environmental taxation (Timilsina, 2022). In an analytical study on heterogeneous carbon prices and 

distribution, Abrell et al. (2018) show that deviations from uniform carbon pricing can be justified to 

achieve optimal outcomes when we accept heterogenous preferences across household groups, or 

when social equity concerns at the outset lead us to weigh the utilities of different household groups 

differently. A more economically efficient alternative to non-uniform carbon pricing to alleviate 

regressive effects can be household-specific revenue transfers (e.g. Hänsel et al., 2022). Such 

mechanisms might, however, be difficult to implement in practice.  

In this paper, we evaluate whether the observed non-uniform carbon pricing regimes in the EU have 

indeed made climate mitigation less regressive, and how more uniform policies compare in terms of 

distributional outcome. We aim to contribute to recent advances in microsimulation that account not 

only for direct taxation but also for indirect tax impacts (Akoğuz et al., 2020; Amores et al., 2022), in a 

setting where carbon pricing is applied with varying stringency, i.e., differing scope and price level. 

 
2 In 2023, there were 73 carbon pricing instruments in force in 39 national and 33 subnational jurisdictions (World Bank 

Group, 2023). 



Europe is a particularly interesting case for an analysis of carbon pricing incidence, given its long 

history of environmental taxation, ongoing and planned climate policy initiatives, as well as the fact 

that carbon pricing policy developments have resulted in heterogenous cross-sector and cross-country 

carbon prices. Several European countries started carbon taxation in the early 1990s, and the EU 

Emissions Trading System (EU ETS), introduced in 2005, was the world’s largest carbon market until 

the introduction of China’s ETS in 2021. Over time, the EU ETS has been increasing in stringency. 

Considerable changes were implemented in the step from phase II to phase III in 2013, when more 

sectors were included, more gases were covered, and free allocation of permits ceased to be the 

default method of allocation (European Commission, 2023b). Prices fluctuated between zero and 42 

EUR per ton of CO2 equivalent until 2020, before increasing to over 100 EUR in 2023 and receding 

since then (Trading Economics, 2023). As a further strengthening of its carbon pricing regime, the EU 

introduced a carbon border adjustment mechanism (CBAM) intended to reduce carbon leakage by 

aligning carbon prices on emissions embodied in certain imports with domestic prices. Earlier research 

for the case of Europe suggests that pricing indirect emissions embodied in imports can make impacts 

more progressive (Feindt et al., 2021), given that richer households buy more imported products. 

Our research is the first to be based on a comprehensive sectoral carbon price dataset (Dolphin & 

Merkle, forthcoming; Dolphin & Xiahou, 2022), matched with multi-regional input-output time series 

(Lenzen et al., 2017, 2021) and detailed household expenditure data from the EU. We first compute 

the household incidence of observed heterogenous carbon prices across The EU from 2010 to 2020 

and identify distributional trends over time. We then decompose changes over time to identify 

whether distributional impacts have changed due to changes in policies, carbon intensities, economic 

interdependencies, or consumption bundles. Finally, we run simulations of various alternative carbon 

pricing scenarios in comparison to the observed heterogenous regimes in place. In particular, we 

quantify the immediate incidence and distributional impacts of a hypothetical uniformization of 

prices. 

Our results suggest that on average, the uniformization of carbon prices within countries as well as 

across countries would have made policies less regressive in most EU countries. The least regressive 

expenditure impacts are obtained when imposing a uniform global carbon price. This is because 

pricing exemptions between 2010 and 2020 have benefited high-income households more than low-

income households. These results suggest that ongoing efforts to broaden the scope of carbon pricing 

at the EU level—particularly the closing of domestic pricing gaps—and the adoption of border carbon 

price adjustments on imported products will improve the income distribution impact of carbon 

pricing—making it more progressive, all else equal. Given that all countries of the EU have comparably 

open economies, our model shows that lump-sum transfers of carbon pricing revenue can offset and 

exceed the burden on low-income households in the EU. 

 

2. Literature Review 

Carbon pricing has long been economists’ preferred instrument to tackle harmful GHG emissions as, 

in theory, it yields the largest possible emissions reductions for any given price (Timilsina, 2022). 

Following an approach first suggested by Pigou (1920), the rationale is to internalize the 

environmental cost by altering relative prices of inputs to production and of final products, to 

incentivize shifts towards decarbonized production and consumption patterns. 



Within-country distributional impacts of carbon pricing3 can be evaluated from different perspectives, 

i.e., from the point of view of income sources (sources-side), where impacts depend on the emissions 

intensities of jobs and capital, and from the point of view of expenditures (uses-side), where impacts 

depend on carbon intensities of consumption baskets (Rausch et al., 2011). Our analysis focuses on 

uses-side incidence.4 When looking at within-country uses-side incidence, most household level 

studies find that distributional impacts are regressive, which stems from the fact that low-income 

households on average spend larger shares of their budgets on carbon intensive goods and services 

like energy and food than high-income households (Boyce, 2018; Ohlendorf et al., 2021; Peñasco et 

al., 2021). Diverging evidence has been found for low-income countries, where carbon price incidence 

is progressive when low-income households cannot afford carbon-intensive goods and services even 

without carbon pricing, while high-income households have comparably carbon-intensive lifestyles 

and would therefore incur relatively higher carbon costs (Boyce, 2018; Dorband et al., 2019; Ohlendorf 

et al., 2021). When carbon pricing impact on capital is considered, policy impacts tend to be less 

regressive  (Goulder et al., 2019). 

Empirical research on the distributional impacts of carbon pricing has been conducted from different 

perspectives and with different methodological approaches. One body of research analyses climate 

change accountability questions by matching greenhouse gas emissions at fine sectoral resolution 

with household expenditure data and computing how carbon emitted along global value chains is 

linked to the consumption patterns of different household groups. Examples include Chancel (2022) 

and Ivanova & Wood (2020). These studies rely on input-output methodology, and they benefit from 

developments in detail and coverage of multi-regional economic and environmental accounts data, 

namely by EORA and EXIOBASE. The findings of both studies converge in showing how top expenditure 

quantiles are responsible for a substantially over-proportional amount of global carbon emissions. 

This is because of their consumption as well as wealth (i.e., investment) profiles (Chancel, 2022). 

Absolute carbon footprint statistics by household can provide evidence on which household groups 

and what products are associated with the largest part of global carbon emissions. They are, however, 

not sufficient to illustrate the distributional impacts of climate change mitigation policies across 

households. Indeed, how a carbon price impacts a household group does not only depend on its total 

carbon footprint but, importantly, on (1) the household group’s expenditure on carbon-intensive 

products relative to its total expenditure, (2) what proportion of these products is covered by a carbon 

price, and (3) the substitutability of such products with low-carbon or not-carbon-priced alternatives. 

Hence, the incidence of carbon pricing policies across household groups has been analyzed by another 

growing body of research, which we divide into three main categories. In a first category that we 

denote ‘static direct incidence simulation’, the carbon price is directly applied to household emissions, 

leading to direct costs for the household. This approach has been used by Andersson & Atkinson 

(2020) for the Swedish carbon tax on private transport, evaluating tax regressivity over time on the 

basis of observed household expenditure data and observed carbon tax data. They find that 

 
3 This paper focuses on within-country incidence. However, between-country incidence may be equally important. Between-

country distributional impacts of carbon pricing are connected to whole-economy carbon intensities, where countries 
relying on carbon-intensive energy and processes are typically hit harder than less carbon-intensive countries (Fullerton 
& Muehlegger, 2019). A further differentiation can be made between within decile distribution of incidence (horizontal 
equity) and across decile distribution of incidence (vertical equity), where the former is often found to have a larger 
variation than the latter (Feindt et al., 2021; Hänsel et al., 2022). 

4 Studies looking at source-side impacts tend to find progressive impacts of carbon pricing (Antosiewicz et al., 2022; Goulder 
et al., 2019; Mayer et al., 2021) 



regressivity of the transport tax depends on whether current expenditure or lifetime expenditure are 

used as a baseline for the calculation. 

In the second category, denoted ‘static total incidence simulation’, a carbon price is imposed on 

consumers’ national or global carbon footprints considering carbon embodied in economic value 

chains that lie behind those goods and services that households buy5. This approach relies on input-

output data and methodology, and household expenditure data, as well as assumptions about the 

carbon price . It has been adopted in several recent studies, focusing on various regions, including low- 

and middle-income countries (Dorband et al., 2019), Europe (Feindt et al., 2021), the United States 

(Fremstad & Paul, 2019) and Latin America and the Caribbean (Missbach et al., 2022). Findings suggest 

predominantly regressive impacts across income groups in Latin America and the Caribbean (Missbach 

et al., 2022) , regressive impacts across income groups in the U.S. (Fremstad & Paul, 2019), neutral 

impacts for within-country expenditure groups in the EU (Feindt et al., 2021), and mostly progressive 

impacts across income groups in other low- and medium-income countries (Dorband et al., 2019). 

Impacts across expenditure groups across EU countries are found regressive, as low-expenditure 

households are over proportionally represented in more carbon intensive countries (Feindt et al., 

2021). A strength of static incidence analysis is its transparency and reflection of immediate impacts. 

Dorbrand et al. (2019) argue that immediate impacts are relevant for political acceptability. 

Simulations using this approach can include specific price-elasticities of demand, and thereby take 

basic account of how households would adapt their expenditure in reaction to changed prices. It is 

also possible to simulate the immediate impacts of different revenue recycling schemes (Fremstad & 

Paul, 2019). However, static incidence analysis cannot reflect impacts arising from general equilibrium 

effects, which are especially important to reflect longer term adjustments.6 

Therefore, a third category of analyses use general equilibrium frameworks, where a larger range of 

economic adjustments can take place, contingent on the specific set-up of the model. These types of 

models simulate the outcomes of utility-maximizing behaviour within a given policy setting. Typically, 

the sectoral resolution is limited and there is a single, representative, agent. General equilibrium 

frameworks are considered particularly suitable for estimating longer term expected macroeconomic 

consequences of changed policies, as optimizing adjustment processes may take time. Examples 

include Rausch et al. (2011) for a general equilibrium simulation of carbon pricing in the United States, 

Goulder et al. (2019) for a general equilibrium simulation of a carbon tax in the United States, and 

Sager (2021) for a partial equilibrium simulation of carbon price incidence across the world. All these 

studies find regressive use-side impacts of carbon pricing, which can be reduced or neutralized by 

employing revenue recycling schemes. 

A common trait observed across simulation studies of all types is the assumption that a single carbon 

pricing policy is imposed on a single sector (Andersson & Atkinson, 2020) or it is imposed uniformly 

across all economic sectors (e.g. Feindt et al., 2021; Goulder et al., 2019). While the latter is in line 

with the economic rationale of incentivizing equal marginal abatement costs across all actors to 

achieve overall emission reduction at minimal cost, it falls short of real-world implementation to date, 

 
5 Feindt et al.’s study shows, i.a., how different definitions in spatial scope can imply contrasting results. When household 

expenditures are grouped by country, impacts are found neutral, and when they are grouped together for the whole EU, 
impacts are found regressive. 

6 In the long-run, distributional impacts depend on equilibrium effects of carbon prices, which hinge on structural market 
parameters – particularly price elasticities and the underlying context of substitutability of carbon intensive practices, 
goods, and services (Fullerton & Muehlegger, 2019). The general rule within an equilibrium setting can be summarized 
in a simple way: the less price-elastic an agent is compared to other agents, the higher the share of the burden she will 
bear from the policy. This rule applies to comparisons of demand and supply incidence in a market, but also to discussions 
of the pass-through of costs in a setting of imperfect competition. 



which has been sector-fuel specific. In our analysis, we consider 60 sectors in 54 regions across the 

world and 270 consumer groups in the EU, within a static total incidence simulation setup, 

conceptually comparable to Dorbrand et al. (2019), Feindt et al. (2021), Fremstad & Paul (2019) and 

Missbach et al. (2022). The novelties of our approach compared to the abovementioned studies are 

fourfold: (1) We use new multi-regional input-output data that is available in yearly time steps until 

2021 together with detailed household expenditure data in five year time steps available until 2020, 

(2) we consider observed heterogenous carbon prices and apply these prices at the production end, 

(3) we run our analyses across multipletime steps to identify whether distributional impact changes 

have occurred due to evolving heterogenous price regimes or other factors, and (4) we simulate 

distributional impacts of an evolving scope of uniform prices, first extending the coverage within 

countries to all sectors, then to all sectors across countries, with and without domestic revenue 

recycling. 

 

3. Data & Method 

3.1 Matching of Data 

Our research is based on the World Carbon Pricing Database (WCPD), the first comprehensive 

database providing sector-fuel-level carbon prices for the period 1990 to 2021 for 138 countries and 

several subnational entities (Dolphin & Merkle, forthcoming; Dolphin & Xiahou, 2022). This dataset 

captures corrective taxation to reduce carbon emissions (see Bruvoll, 2013), and can be used to 

calculate  emissions-weighted, averages of fuel-level, sector-specific, carbon prices, as done in Rafaty 

& al. (2021). We remap this data and join it with the Global Resource Input-Output Assessment model 

v.57 (GLORIA), a comprehensive economic accounts framework covering 164 countries with 120 

sectors each, across the time span of 1990 to 2020 (Lenzen et al., 2017, 2021). We aggregate the 

original GLORIA resolution to a 60 economic sector resolution covering 49 countries and 5 Rest of 

World accounts. We calculate sector-level carbon prices by taking all applicable pricing schemes into 

account, weighting them with the respective emissions they cover in each sector, and calculating the 

average. A link between the carbon pricing data and GLORIA is possible because GLORIA includes 

satellite GHG emissions accounts that provide emissions by IPCC category for each sector.7 The details 

of the price-matching procedure are provided in Appendix A.  

We then use scientific-use data from the European Household Budget Survey (Eurostat, 2023a) to 

disaggregate GLORIA household demand vectors into income deciles based on COICOP expenditure 

classification level 3 (four digit) resolution survey data. The details of this second matching process 

are provided in Appendix B. As a robustness check, we run our analysis on expenditure deciles as well. 

8 We provide disaggregated household demand accounts for all countries and waves that EU HBS 

scientific use files cover without missing income data.9 Our sample of countries is given in Table 1. 

 
7 GLORIA and EORA are the only global input-output time series with carbon emissions disaggregated by IPCC sector we are 

aware of. We chose GLORIA for its constant sectoral detail, allowing for a detailed matching with household budget 
survey data, and for temporal decomposition. Further advantages of GLORIA include large country coverage and detailed 
material and land use satellite accounts, which allow for future extensions of this research. 

8 Grouping households by expenditure deciles rather than income deciles does not change the qualitative differences 
between the outcomes of our price scenarios in our framework. We therefore conclude that our findings are robust to 
different definitions of household means. 

9 Carbon prices in 2022 were mostly higher than in 2020, but we do not report incidence results for 2022 in this paper because 
(a) demand composition might have changed substantially in the course of the global Covid pandemic but we only have 
pre-Covid household budget survey data, and (b) using 2022 data matched to 2020 household group demand 
composition does not change the conclusions of the paper. 



Table 1: HBS countries and waves with non-missing data in the scientific-use files 

Country 2010 2015 2020 Country 2010 2015 2020 

Austria   x Latvia x x x 

Belgium x x x Lithuania x x x 

Bulgaria x x x Luxembourg  x x 

Croatia x x x Malta  x x 

Cyprus x x x Netherlands  x x 

Czech Republic x x  Poland x x  

Denmark x x x Portugal x x  

Estonia x x x Romania x x  

Finland x x  Slovak Republic x x x 

France x x x Slovenia x x x 

Germany x x x Spain x x x 

Greece x x x Sweden x x  

Hungary x x x United Kingdom x   

Ireland x x      

In our sample, 37 countries had a carbon pricing in place as of 2020. In most countries, these 

mechanisms cover GHG emissions from power generation and industry. Only a few countries (e.g., 

France, Portugal) cover emissions from road transport or buildings. Many of these countries are 

European countries that participate in the EU ETS. In all countries, the average economy-wide carbon 

price is below the highest carbon price (Figure 1), reflecting the fact that coverage of emissions is 

incomplete or that some emissions are faced with a lower price. In 2020, the world average price of 

CO2 was USD 2.2/tCO2. Among countries included in our dataset, the average price of carbon varied 

between USD 0 and USD 70 in Sweden. 

 

Figure 1: Price variation across 37 countries, plotting for each country the highest sectoral carbon price, and the emissions-
weighted average carbon price, post-matching. Triangles for countries that take part in the EU ETS. If the average price is 
equal to the highest price, triangles are on the diagonal. In most countries the emissions-weighted average is lower than the 
highest carbon price, due to incomplete emissions coverage. 

3.2 Household Incidence  

A key feature of our research is to take into account how heterogenous prices at the production level 

pass through inter-sector linkages to consumers’ final expenditure; that is, we do not assume a 

uniform carbon price applied to carbon footprints, unlike Dorbrand et al. (2019), Feindt et al. (2021), 

Fremstad & Paul (2019) and Missbach et al. (2022). 

The main assumptions of our incidence methodology are (1) carbon prices are applied where 

emissions are released, generating carbon costs that producers pay, (2) these costs fully pass through 

 

  

   

   

         

                                   

 
 
 
  
 
 
  
 
  
 
 
 
  
 
 
  
 
 
  
  
 
 
 
  

 
 
 

    

 

  

   

   

         

                                   

    

 

  

   

   

         

                                   

    



international value chains and impact the prices of final consumer products10. The sum of all carbon 

costs at the producer end is therefore equal to the sum of all carbon costs at the consumer end. We 

furthermore add carbon costs from direct household emissions, where those are subject to a carbon 

price. 

Cost incidence for a household is defined as the proportion of carbon cost over total expenditure. It 

states what share of a household’s expenditure was used to pay for direct and product-embodied 

carbon emissions. We summarise the approach in the following paragraphs. All vectors and matrices 

are time-varying, but we omit time indices for easier readibility. 

The global economy is represented as a network of economic sectors and final demand. This way of 

accounting for economic structure and using it for analytical purposes goes back to the work of 

Francois Quesnay and Wassily Leontief, and is extensively covered by Miller & Blair (2022). Sectors k 

are interdependent, i.e., they require inputs from each other to generate output. The monetary flows 

of these interdependencies are captured by the input-output matrix Z with dimension K x K. Consumer 

demand is captured by a demand matrix Y with dimension K x N, where rows are sectors and columns 

are consumer groups structured by countries and income or expenditure quantiles. The total output 

vector is x with dimension K x 1. We have a total number of K sectors, and a total number of N 

consumer groups. In our case we work with 54 regions, 60 sectors, 10 household groups in 27 EU 

countries, and aggregated households in all other regions. Therefore, our dimensions are K=3240 and 

N=297, where K denotes all possible country-sector combinations. The relationships are: 

(

𝑧1,1 ⋯ 𝑧1,𝑘
⋮ ⋱ ⋮
𝑧𝑘,1 ⋯ 𝑧𝑘,𝑘

) ∗ (
1
⋮
1
) + (

𝑦1,1 ⋯ 𝑦1,𝑛
⋮ ⋱ ⋮
𝑦𝑘,1 ⋯ 𝑦𝑘,𝑛

) ∗ (
1
⋮
1
) = (

𝑥1
⋮
𝑥𝑘
) (1) 

We compute the technical coefficients matrix 𝐀, which provides input-output coefficients as a 

proportion of total output11. 

𝑨 = 𝒁 ∗ 𝑑𝑖𝑎𝑔(𝒙−1) (2) 

The next step is to compute the Leontief matrix 𝐋, capturing total input requirements of each sector. 

𝑳 = 𝑰 + 𝑨 + 𝑨2 + 𝑨3 +⋯ = (𝑰 − 𝑨)−1 (3) 

In doing so, we account for direct inputs to production, as well as all inputs to inputs. Using total input 

requirements 𝐋 enables us to account for all indirect effects resulting from interconnection of global 

value chains.  

Each sector’s output generates CO2 emissions captured by the vector 𝐞. Furthermore, each sector is 

subject to a specific carbon price, which varies according to what fuels it uses and according to what 

specific policy provisions are in place. All these industry-specific prices are captured by the vector 𝐩. 

 
10 The extent to which carbon prices pass-through value chains is an active field of research and empirical studies find large 

variation in pass-through rates between -300% and + 300% for the EU-ETS (Neuhoff & Ritz, 2019). It is possible that 
actual pass-through rates vary across scenarios. To ensure ceteris paribus scenario comparability, we stick to full pass 
through in this project. The variation of cost pass through and carbon price incidence in an input-output setting is left 
for future research. 

11 Cases of zero output are denoted by elements of 𝐱 being equal to zero. Such cases return errors when computing the 
inverse of elements of 𝐱. We therefore impose: 

𝒙−1 = {𝒙
−1 𝑓𝑜𝑟 𝑣𝑒𝑐𝑡𝑜𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑥𝑘 ≠ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 



From 𝐞 and 𝐩, we compute the total carbon costs 𝐜, which occurs at the production end, as well as 

the direct carbon cost intensities 𝐝 of production. 

𝒄 = 𝑑𝑖𝑎𝑔(𝒆) ∗ 𝒑 (4) 

𝒅 = 𝑑𝑖𝑎𝑔(𝒙−1) ∗ 𝒄 (5) 

With our direct cost intensities 𝐝 and our Leontief matrix 𝐋, we compute the type 1 multiplier12 for 

carbon costs, which we denote 𝐦. 𝐦’s dimension is 1 x K. 

𝒎 = 𝒅𝑇 ∗ 𝑳 (6) 

To calculate the carbon costs embodied in consumption bundles, i.e., the indirect carbon cost (𝑖𝑐𝑐), 

we pre-multiply the consumer group’s consumption bundle 𝐲𝐢 with our multiplier. 

𝑖𝑐𝑐𝑖 = 𝒎 ∗ 𝒚𝒊 (7) 

Incidence, rcc, is given by the consumer carbon costs divided by total expenditure on products from 

all country-sector combinations. This indicator captures the consumer burden from carbon pricing as 

an indirect form of taxation. 

𝑟𝑐𝑐𝑒𝑚𝑏𝑖 =
𝑖𝑐𝑐𝑖
∑ 𝑦𝑘𝑖𝑘

(8) 

We furthermore add the direct household carbon emissions and associated direct household carbon 

costs. For this step we use the household emissions vector 𝐡 and the emissions weighted carbon prices 

for household emissions 𝐩. 

𝑑𝑐𝑐𝑖 = 𝒉𝒊
𝑻 ∗ 𝒑 (9) 

Incidence is given accordingly, providing an indication of the consumer burden from carbon pricing as 

a direct form of taxation. 

𝑟𝑐𝑐𝑑𝑖𝑟𝑒𝑐𝑡𝑖 =
𝑑𝑐𝑐𝑖
∑ 𝑦𝑘𝑖𝑘

(10) 

and incidence of all carbon costs is then: 

𝑟𝑐𝑐𝑓𝑢𝑙𝑙𝑖 =
𝑖𝑐𝑐𝑖 + 𝑑𝑐𝑐𝑖
∑ 𝑦𝑘𝑖𝑘

(11) 

The average carbon price paid by consumers is calculated in in a similar fashion as incidence, but we 

replace the denominator by the total carbon footprint of the respective household group. 

3.3 Distributional Indicators 

To compare distributional implications of varying price regimes we compute a summary measure of 

the distributional impacts, the Suits Index. The Suits index is a measure of progressivity of tax, 

comparable to the Gini index for income and wealth distribution, and is commonly used in the 

literature (Andersson & Atkinson, 2020; Feindt et al., 2021). It is defined on the interval [-1,1]. If carbon 

costs accumulate faster than income over the range of income quantiles, the suits index is negative, 

implying a regressive policy impact. If income accumulates faster than costs, the suits index is positive, 

 
12 Input-Output modelling literature makes a distinction between Type I and Type II multipliers. Type I multipliers reflect 

direct and indirect effects, while Type 2 multipliers also include induced effects. The latter requires endogenizing demand 
vectors, for which various methods exist (Emonts-Holley et al., 2021). Both environmental footprint analyses and IO-
based incidence analyses are based on Type 1 multipliers. 



implying a progressive policy impact. Therefore, values below zero indicate regressive tax impact, and 

values above zero indicate progressive tax impact, and zero indicates a neutral impact.  

The index is calculated by relating the area under a Lorenz curve to the area under a hypothetical 

diagonal of perfectly equal distribution (Suits, 1977): 

𝑆 = 1 −
𝐿

1
2 ∗ 100

2
(12) 

where 𝐿 is the area under Lorenz curve that relates accumulated percent of expenditure 𝑦 to 

accumulated percent of total tax burden 𝑇. It is calculated as: 

𝐿 = ∫ 𝑇(𝑦) 𝑑𝑦

100

0

(13) 

If the whole tax burden falls on the poorest household, then 𝐿 = 1002 and hence 𝑆 = −1. If it only 

falls on the richest household, then 𝐿 = 0 and hence 𝑆 = 1. If the tax burden is proportional to y, then 

𝐿 =
1

2
∗ 1002 and hence 𝑆 = 0. In the case of aggregated household groups 𝑖, for example deciles, we 

can use a trapezoidal approximation to the continuous integral: 

𝐿𝑎𝑝𝑝𝑟𝑥 =∑
1

2
∗ (𝑇(𝑦𝑖) + 𝑇(𝑦𝑖−1)) ∗ (𝑦𝑖 − 𝑦𝑖−1)

10

𝑖

(14) 

As a second distributional indicator we use the tax incidence ratio of the lowest income decile over 

the highest income decile: 

𝑝10𝑝90 =
𝑟𝑐𝑐1
𝑟𝑐𝑐10

(15) 

This indicator has an intuitive interpretation, showing how much larger the burden on low-income 

households is compared to the burden on high-income households. 

3.4 Structural Decomposition of Incidence Factors 

Given that our data spans multiple time steps, we can decompose changes in consumer incidence into 

different factors. This allows us to find out how price changes have impacted different consumer 

groups, and how these impacts compare to other factors of incidence. While earlier studies on 

inequality and climate policy have applied cross-sectional decompositions (Dorband et al., 2019; 

Feindt et al., 2021), we decompose changes over time using Structural Decomposition Analysis (SDA). 

The idea is to disentangle the observed change in an aggregate variable of interest into its constituent 

factors. 

SDA is the input-output model equivalent to index decomposition analysis (IDA), and it is preferable 

to the latter due to its ability to handle indirect effects, i.e., in our case indirect tax effects. It is a well-

established method in research on energy and carbon emissions and available SDA methods have 

been reviewed extensively (de Boer & Rodrigues, 2020; Hoekstra & van den Bergh, 2003; Rose & 

Casler, 1996; Su & Ang, 2012). In our study we use the Log Mean Divisia Index (LMDI) as a 

decomposition formulation13. It goes back to the Montgomery price and quantity indicators, and has 

 
13 Ang & Choi (1997) and Ang & Liu (2001) are commonly referenced papers in the field of environmental and energy 

research. We correct for zero-value problems using an algorithm suggested by Wood & Lenzen (2006). A comparable 
LMDI application to input-output time series was done by Wachsmann et al. (2009), who decompose energy use in Brazil. 



the advantages of being non-parametric and leading to a unique solution without residual (De Boer, 

2008). 

We decompose incidence 𝑟𝑐𝑐 by consumer group and country into seven factors, namely emissions 

intensities 𝐞, carbon prices 𝐩, economic structure 𝐋, consumption bundles 𝐲, total scale of 

consumption 𝑎, household emissions 𝐡, and prices on household emissions 𝐤. As derived in section 

3.2, the identity is given by: 

𝑟𝑐𝑐 = (𝑑𝑖𝑎𝑔(𝒆) ∗ 𝒑)𝑇 ∗ 𝑳 ∗ 𝒚 ∗ 𝑎−1 + 𝒉𝑇 ∗ 𝒌 ∗ 𝑎−1 (16) 

We decompose the change in carbon costs between two timesteps, t=1 and t=0, into: 

∆𝑟𝑐𝑐 = ∆𝑟𝑐𝑐(𝒆) + ∆𝑟𝑐𝑐(𝒑) + ∆𝑟𝑐𝑐(𝑳) + ∆𝑟𝑐𝑐(𝒚) + ∆𝑟𝑐𝑐(𝑎) + ∆𝑟𝑐𝑐(𝒉) + ∆𝑟𝑐𝑐(𝒌) (17) 

Where ∆𝑟𝑐𝑐(𝒆) is the change in 𝑟𝑐𝑐 due to 𝒆, holding all other factors fixed. This allows us to isolate 

the effect of a single factor on the change, holding all else equal.  Its derivation is based on expressing 

the integrated total differential of the equation as the sum of all integrated partial differentials. 

Importantly, this process relies on the assumption that factors are independent. Using the LMDI 

formulation, the contribution of changing carbon prices is: 

∆𝑟𝑐𝑐(𝒑)  + ∆𝑟𝑐𝑐(𝒌) =∑
∆(𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎

−1)

∆(ln 𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎
−1)

∗ ln
𝑝𝑛
1

𝑝𝑛
0

𝑛𝑜

+∑
∆(ℎ𝑣𝑘𝑣𝑎

−1)

∆(ln ℎ𝑣𝑘𝑣𝑎
−1)

∗ ln
𝑘𝑣
1

𝑘𝑣
0

𝑣

(18) 

We provide the remaining decomposition formulas and the derivation of structural decomposition 

with the LMDI approach in Appendix C. 

3.5 Scenario Simulation 

Finally, we compare household incidence of the observed heterogenous carbon prices with 

hypothetical uniform price scenarios for each country and year. With each scenario we increase the 

scope of uniformization, adjusting the price vectors accordingly.  In scenario 2, we only adjust prices 

within the country of interest. In scenario 3, we adjust prices in the EU ETS region plus Switzerland. In 

scenarios 4 and 5 we adjust prices in all countries of the world. Scenarios and interpretations are 

summarised in Table 2. 

Table 2: Scenarios14 

Name Description 

S1 Existing The baseline of heterogenous policies as observed. Household incidence is affected by 
domestic policies as well as foreign policies where these policies affect imported products. 

S1b Existing w/o non-EU The baseline of heterogenous policies as observed, but with prices in non-EU countries set to 
zero. 

S2 Uniform within country Alternative scenario. We identify a uniform carbon price that would return the same total 
revenue as the heterogenous baseline and impose it on all sectors equally. We leave pricing 
policies in other countries as they are. 

S3 Uniform across EU Alternative scenario. We take the EU ETS price and apply it uniformly across all sectors in all 
countries within the EU ETS region. Pricing policies in other countries stay as they are. 

S4 Uniform across world Alternative scenario. We take a price of USD 50 and apply it uniformly across all sectors in all 
countries. This is the lower bound recommended by the High-Level Commission on Carbon 
Prices 

S5 IMF CPF Alternative scenario. We impose the IMF Carbon Price Floor scenario, implying USD 25 for 
low-income countries, USD 50 for medium-income countries, and USD 75 for high-income 
countries, applied uniformly across sectors. 

 
14 We have run more scenarios than those stated in this table, but we only report the main scenarios in this paper. Examples 

for further scenario variations we have analyzed include different S2 scenarios, choosing uniform prices according to the 
average price or according to the highest price. In most cases this variation made no substantial difference. We have also 
run explicit EU CBAM scenarios, finding progressive impacts. 



After running all scenarios without explicit consideration of what happens with the revenues 

generated through the pricing policies, we introduce revenue recycling as a last step in our analysis. 

We choose a lump sum transfer scheme, where all carbon pricing revenues generated within a country 

are redistributed equally across the population within the same country. 

 

4 Results 

4.1 Heterogenous Carbon Price Incidence 

This section discusses results for carbon prices as implemented by countries so far (i.e., the ‘baseline’). 

Explanations are further elaborated as we move through the following sections. Our analysis shows 

that the average incidence of these prices was generally low, ranging between 0.1% of household 

expenditures in Luxembourg in 2015 and 1.9% in Estonia in 2010. The decile-wise distribution across 

EU countries is illustrated in panel A of Figure 2. In all the 19 EU countries for which we have detailed 

expenditure data for 2020, carbon pricing incidence was regressive, implying that lower-income 

households incurred a larger relative expenditure burden from carbon pricing than high-income 

households. For 2020 we find the largest difference in incidence in Estonia, where first income decile 

spent three times more of their budget than the tenth income decile. 

Two factors drive the carbon cost. The first factor driving incidence of carbon pricing is the carbon 

content of consumption bundles, calculated by dividing the amount of carbon embodied in 

consumption by total expenditure (Figure 2, panel B). The average carbon footprint per USD spent 

provides an indication of the incidence of a uniform carbon price on consumer groups, all else equal. 

Our results for this indicator confirm a well-established finding in the literature: In countries of the 

global north, lower-income groups spend a higher proportion of their budget on carbon intensive 

products, like gas for heating, while high-income groups spend a lower proportion of their budget on 

such products. Importantly, high-income households still have larger absolute carbon footprints than 

low-income households, but this does not imply a high relative burden of carbon pricing. 

Many countries in our sample have a slightly inverted u-shaped carbon intensity of expenditure across 

income groups. This means that the first income decile can still have a comparably low carbon intensity 

of expenditure, while the next deciles have comparably high intensities. Reasons include that first and 

second income deciles have lower expenses on petrol, associated with less car ownership. From the 

fourth decile onwards, intensities decrease again. For 2020 we observe the highest intensities in 

Bulgaria and Estonia, where carbon intensities range between 400 and 1000g CO2 per USD, and the 

lowest intensities in Denmark and France, where carbon intensities range between 150 and 250g CO2 

per USD. We find a general tendency for increased regressivity with increased carbon intensity of the 

economy. This tendency is significant for 2015 and 2020 when regressivity is measured with the 

p10p90 index: we observe an increase of 0.4 – 0.5 in p10p90 for every 100g increase of carbon 

intensity. A complete overview on regressivity correlations is provided in Appendix D. 



 

Figure 2: Carbon price incidence by income decile in 2020. Distributions across EU countries, excluding Czech Republic, Finland, 
Ireland, Poland, Portugal, Romania, Sweden and United Kingdom due to missing data in the 2020 wave of the European 
Household Budget Survey. Red dots are distribution means. Panel C shows the average price that the household group paid 
per ton of carbon. Panel B shows the average emissions intensity per USD of expenditure of the household group. Panel A 
shows the incidence of costs from carbon pricing on the household group’s total expenditure. In each panel we move across 
within-country income-deciles from left to right. 

Due to non-uniform carbon prices across sectors, the price of carbon embodied in different products 

varies. Products that result from value chains which are mostly covered by carbon pricing policies will 

have a larger embodied carbon price than products resulting from value chains that are less 

comprehensively covered by carbon pricing policies. As consumption bundles vary across household 

income groups, the heterogenous nature of carbon prices has implications for incidence. This is the 

second factor of incidence (Figure 2, panel C). Household groups consuming a larger proportion of 

non-priced goods and services benefit from the price heterogeneity, while those groups that consume 

a larger proportion of priced goods and services face a higher implicit carbon price on average. 

Our incidence calculations for the EU in 2020 show that average price paid for carbon across all 

emission sources were around 11.35 USD, which was 60% lower than the EU ETS price of that year 

(28.22 USD). The difference between this average price paid for carbon and the EU ETS price is due to 

incomplete carbon price coverage in the value chains behind the products that EU consumers buy. 

Similarly, in countries that have adopted a carbon tax in addition to the EU ETS, we also find lower 

average price paid for carbon than the maximum national carbon price. In France, for example, the 

average price paid was 34.95 USD in 2020, while the carbon tax in the same year was 50.87 USD. 

Our results show that the heterogeneity in carbon prices has on average led to higher average prices 

paid for carbon for low-income household groups than for high-income household groups. On 

average, the first income deciles paid 1.26 USD more per ton of carbon than the tenth income decile. 

We observe the largest difference in carbon rates for Bulgaria, where the lowest income decile paid 

4.95 USD more per ton of carbon than the highest income decile. Differences also prevail in large 

economies such as Germany, where households belonging to the first income decile paid 1.76 USD 

more per ton of carbon than households belonging to the tenth income decile. The exceptions in 2020 

are Denmark, Lithuania, Luxembourg, and Spain, where the highest income households faced a higher 

price than the lowest income households. 

   

   

   

   

           

                  

                        

    

    

    

    

    

           

            

                                  

 

  

  

  

  

           

           

                                



4.2 Temporal Decomposition of Incidence 

Our decomposition of incidence changes over time shows that, as a result of decreasing carbon 

intensities, household incidence overall is lower in 2020 than in 2010. However, it increased between 

2015 and 2020, largely due to increasing product-embodied carbon prices, whose effect was only 

partly offset by decreasing carbon intensities. Increasing prices from 2015 to 2020 occurred in line 

with the increasing EU ETS price from 8.52 USD to 28.24 USD. The downward push from carbon 

intensities occurs in line with efficiency improvements, which, all else equal, lowers the carbon cost 

burden on households as it reduces the carbon footprint of products that households buy. Demand 

composition changes mitigated incidence to a small extent, reflecting the small adaptation of 

consumers consumption bundles. Importantly, our decomposition methodology does not allow for 

causal inference – we are unable to assert if demand composition would have changed more under a 

more stringent pricing regime. 

 

Figure 3: LMDI structural decomposition results. We decompose the change from 2010 to 2015 and the change from 2015 to 
2020 into contributions from its underlying factors. Factors are: carbon intensity (Carbon), product-embodied prices (Prices 
Emb), direct household emission prices (Prices Dir), composition of consumption bundle (Demand Comp) and demand volume 
and technical coefficients, which are collected in an “Other” category. The top panel shows incidence as observed. The bottom 
panels show what the year-to-year change would have been if it had been the outcome of a respective factor only. Bars below 
zero imply that the factor contributed negatively (reducing incidence), bars above zero imply that the factor contributed 
positively (increasing incidence). 

Regressivity of household incidence has mostly been driven by product-embodied carbon prices, as 

the lower second panel of Fig. 3 indicates. Bars are longer for the lower income deciles than for the 

higher income deciles, suggesting that this factor has increased incidence more for low than for high 

income groups. Carbon prices on direct household emissions, carbon intensities, and demand 

compositions did not have strong distributional incidence implications on average. 

4.3 Incidence Impacts of Uniform Prices 

To understand how household incidence regressivity is related to the heterogenous nature of carbon 

prices observed, we calculate country-decile-wise the household incidence of alternative carbon 

   

   

   

   

            

  
 
  
 
 
 
 
  
 
 

                                                                         

    

   

   

   

            

  
 
  
 
 
 
 
  
 
 
 
 
 
  
 
 
  
  
 
  
 
 

              

    

   

   

   

            

  
 
  
 
 
 
 
  
 
 
 
 
 
  
 
 
  
  
 
  
 
 

                  

    

   

   

   

            

  
 
  
 
 
 
 
  
 
 
 
 
 
  
 
 
  
  
 
  
 
 

                  

    

   

   

   

            

  
 
  
 
 
 
 
  
 
 
 
 
 
  
 
 
  
  
 
  
 
 

                   

    

   

   

   

            

  
 
  
 
 
 
 
  
 
 
 
 
 
  
 
 
  
  
 
  
 
 

             

                   



pricing scenarios where the carbon price is applied uniformly across emissions sources; that is, we ask 

what the household impact would have been with less heterogeneity in prices. 

To summarize the regressivity in a country we use the Suits Index, which we introduced in the method 

section. The Suits Index compares the accumulation of policy-induced carbon costs across household 

groups to the accumulation of income across household groups. The first alternative scenario we 

consider is where every country imposes a uniform carbon price on its domestic emissions. The 

magnitude of the price is chosen so that the total revenue generated from the pricing scheme is equal 

to the revenue that was generated under the heterogenous pricing baseline. Consequently, this 

scenario leaves the fiscal implications of carbon pricing unchanged compared to the baseline scenario. 

Results provide a mixed picture yet show a tendency of uniform carbon levies to mitigate regressivity 

impacts. In 2020, 15 of the 19 countries in our sample would have had a less regressive incidence 

under uniform carbon prices compared to the heterogenous carbon pricing baseline. In addition, we 

find a significant correlation between the regressivity-mitigating impact of a uniform price and 

GDP/capita of a country, suggesting that a uniform price reduces regressivity particularly in lower-

income EU countries (see Appendix D). 

 

Figure 4: Suits index variation across countries, comparing prices as observed (S1) with a domestic price uniformization 
scenario (S2). Red dots are means across countries. S1b makes hardly any difference to S1, which indicates that observed 
carbon prices outside of the EU have hardly had any distributional impacts. A negative suits index implies regressive impacts, 
a positive suits index implies progressive impacts. Notice how uniform prices make impacts less regressive. 

In the next scenarios, we gradually increase the regional scope of carbon price uniformization. In 

scenario 3, we assume that the EU ETS is applied to all sectors in all countries that participate in the 

EU ETS area plus Switzerland. On average across countries, this scenario again implies less regressivity 

(as measures by the Suits index) than the heterogenous pricing baseline, although to a smaller extent 

than in scenario 2. In 68% of the countries in our sample for 2020 scenario 3 leads to less regressivity. 

These countries are the same as those for which find regressivity-mitigating impacts in scenario 2.  

Scenario 4 is a global uniform price scenario, where a carbon price of 50 USD is applied globally across 

all sectors and regions. This scenario provides the lowest magnitude Suits index of all scenarios, 

implying that incidence impacts for EU households are the least regressive, partly due to the fact that 

higher-income households consume relatively more imported goods. We return to this discussion 

below. In most of the countries of our 2020 sample (except Denmark, Spain, Lithuania and 

    

    

    

   

            

                                                    

                                     

                                                                        



Luxembourg) a global uniform price would have reduced regressivity of household incidence. We 

observe the largest regressivity change in this scenario for Bulgaria, Cyprus, and Malta, where 

regressivity measured by the Suits index is reduced by between 34% and 62%.  

The last scenario we consider is the IMF carbon price floor scenario, where low-income countries are 

subject to a uniform price of 25 USD per ton of carbon, middle-income countries are subject to 50 USD 

per ton of carbon, and high-income countries are subject to 75 USD per ton of carbon. This scenario 

implies less regressivity than both the heterogenous baseline (scenario 1) and price uniformity across 

the EU (scenario 3), but not as little as the global uniform price (scenario 4). 

 

Figure 5: Suits index variation across countries, comparing prices as observed (S1) with EU-wide price uniformization (S3), 
global price uniformization (S4) and the IMF carbon price floor scenario (S5). A negative suits index implies regressive impacts, 
a positive suits index implies progressive impacts. Notice how uniform prices make impacts less regressive. 

The driving forces behind the regressivity-mitigating impact of price uniformization can be illustrated 

in two ways. The first relates to the average price paid for carbon, as illustrated in panel c) of Figure 

2. In our analytical framework the average price paid for carbon at the household end is the main 

endogenous variable that changes when we impose counterfactual pricing scenarios. Therefore, it 

explains a large part of the distributional differences we observe across scenarios. To isolate the 

distributional consequence of this driver, we compute the difference in price paid for carbon between 

the lowest (D1) and highest (D10) decile of the income distribution. Figure 6 shows that harmonizing 

carbon prices within countries (S2 central panel), and even more so across all countries (S4 right panel) 

would reduce this difference, thereby mitigating the regressive impact of carbon pricing all else equal. 

    

    

    

   

            

                                                                

                                     

                                                                        



 

Figure 6: Difference in price paid for carbon. Household budget survey data is missing for some country-year entries (see Table 
1). Hence the indicator presented in the figure may not be available for all countries or years (greyed-out countries). 

Second, we look at disaggregated accounts of incidence for a selected country. In Figure 7 we compare 

the disaggregated incidence of the heterogenous pricing baseline with our domestic price 

uniformization scenario (S2) and global price uniformization (S4) for Bulgaria and for Denmark. The 

explanation for the impact in Bulgaria is as follows. Lower-income households spend an 

overproportionate share of their budget on electric power, which is covered by a carbon price already 

in the baseline, due to EU ETS. As we switch to domestic price uniformization, the previously exempted 

sectors get covered by a carbon price and the previously covered sectors are subjected to a slightly 

lower carbon price than before. This is because, by assumption in the uniformization scenario, the 

fiscal impact (revenue) of all carbon prices is held constant, not the prices themselves. This implies 

that transport service, household mobile emissions, and household residential emissions become 

more expensive. Both transport service emissions and emissions from driving cars are categories that 

hit high-income households more than low-income households in Bulgaria, and this leads to less 

regressive pricing incidence overall.  

In Denmark the difference in consumption bundles across household groups is smaller than in 

Bulgaria, and the different sectors of the economy are already relatively comprehensively covered by 

a carbon price, as manufacturing is covered by EU ETS, and service sectors are covered by a national 

carbon tax. Price uniformization therefore implies no large incidence difference in countries like 

Denmark. 

                               

                                            

                                      

                                            

                                           

                                            

        

             



 

Figure 7: Disaggregated household incidence of carbon pricing in Bulgaria (top row) and Denmark (bottom row). Notice how 
electric power in Bulgaria is always regressive, throughout scenarios. Grouped bars relate to income groups, where the 
lightest grey is the first decile, and the darkest grey is the last decile. Incidence is defined as the proportion of carbon costs 
over total expenditure, for each income decile. The first column displays baseline scenario results, the second column displays 
the result of domestic price uniformization, the third column displays the result of global price uniformization. 

The dynamics that explain the differences between scenarios where we vary prices abroad (i.e., in 

non-EU countries), for example S4, also have clear explanations. Our data suggests that high-income 

households spend a larger proportion of their budgets on products that result from international value 

chains, compared to low-income households. In scenarios S3 to S5, carbon prices applicable abroad 

are increased and applied uniformly across economic activities. The implication is that products relying 

on international value chains, as well as directly imported products, become more expensive, which 

hits high-income households over-proportionally. The last column in Figure 6 provides a disaggregated 

example for Bulgaria and Denmark. Two consumption categories that push incidence towards 

progressivity in both cases are manufactured products, i.e., physical products such as smart devices, 

clothes, shoes, and transport services including air and water transport. In the case of Bulgaria, 

increased regressivity through more expensive food and energy is balanced out by the progressive 

impact through transport and manufactured products. 

To examine general tendencies of scenario impacts, we run pooled regressions of the differences 

between our alternative scenarios (S2-S5) and the baseline scenario (S1) on different economic 

characteristics of the countries in our sample. Results for the S1-S4 difference are reported in Table 3 

and results for all other scenario differences are reported in Appendix D. We find that the regressivity-

mitigating impact of a uniform price significantly decreases with GDP per capita. This implies that 

uniform prices would have lowered regressivity particularly for EU countries that have a comparably 

lower level of GDP per capita.  

   

   

   

   

   

  
 
  
 
 
 
 
  
 
 

                   

                    

   

   

   

   

   

  
 
  
 
 
 
 
  
 
 

                   

                           

   

   

   

   

   

  
 
  
 
 
 
 
  
 
 

                  

                                

   

   

   

   

   

  
 
  
 
 
 
 
  
 
 

                   

                   

   

   

   

   

   
  
 
  
 
 
 
 
  
 
 

                  

                          

   

   

   

   

   

  
 
  
 
 
 
 
  
 
 

                   

                               



Table 3: Explaining scenario differences across countries. We estimate linear models to evaluate whether scenario impacts 
vary with country characteristics. Our dataset covers 27 countries and three years. The dataset is unbalanced due to 
missing Eurostat data, as reported in table 1. Coefficients are estimated using pooled OLS and cluster-robust standard 
errors. 

 S1 – S4 Difference in Suits S1 – S4 Difference in P10P90 

Intercept 0.356 
(0.128) 

0.102 
(0.083) 

0.001 
(0.012) 

0.027 
(0.007) 

0.029 
(0.006) 

-2.642 
(0.863) 

-0.837 
(0.750) 

-0.018 
(0.108) 

-0.238 
(0.060) 

-0.258 
(0.061) 

Log 
GDP/capita 

-0.032 
(0.012) 

    0.234 
(0.083) 

    

Log 
Population 

 -0.005 
(0.005) 

    0.041 
(0.045) 

   

Carbon 
intensity 
[100g/USD] 

  0.073 
(0.059) 

    -0.955 
(0.620) 

  

m_price 
[USD] 

   -0.000 
(0.000) 

    0.003 
(0.002) 

 

h_price 
[USD] 

    -0.000 
(0.000) 

    0.003 
(0.001) 

DF 65 65 65 65 65 65 65 65 65 65 
R2 0.18 0.05 0.04 0.01 0.04 0.12 0.04 0.08 0.03 0.06 

Differences between countries of varying GDP per capita are related to how consumption bundles 

vary across household groups, for example, expenditures on personal transport. In low GDP per capita 

countries such as Bulgaria, pricing household mobile emissions is progressive and so a uniform price 

that covers household mobile emissions hits high-income households that faced a lower burden in the 

baseline. In a high GDP per capita country such as Luxembourg, the shift towards pricing household 

mobile emissions is regressive, as poorer households spend an overproportionate share of the 

expenditure on personal transport. In general terms: Products that have benefited from carbon price 

exemptions in the empirical baseline tend to have been luxury products in lower-income EU countries 

and basic products in high-income EU countries. 

4.4 Revenue Recycling 

As a last step in our incidence analysis, we include revenue recycling in all our scenarios. The 

mechanism we apply is a lump-sum redistribution system, according to which all fiscal income 

generated from carbon pricing policies applied on domestic sectors are redistributed equally across 

households within the country at hand. In a closed economy, such a mechanism would imply that the 

carbon costs across household groups add up to zero. Those groups who emit above proportion would 

incur a net positive cost. Those groups who emit below proportion would incur a net surplus, meaning 

negative cost, as the lump sum transfer exceeds the money spent on paying for carbon.  

In open economies such as those of EU countries where consumers buy products that are imported 

as well as domestic products that result from international value chains, the total carbon costs paid 

by households are not equal to the carbon costs that accumulate in domestic sectors. As soon as 

household expenditure bundles are affected by production abroad that is subject to lower carbon 

prices than those applied domestically, the carbon pricing revenue collected domestically may exceed 

the carbon costs that households are incurring through their consumption of products. In our analysis, 

these dynamics play a dominant role. 

The main finding is that in all EU countries in 2020 in the baseline scenario, carbon costs for the lower-

income household groups become net negative, implying that the redistribution mechanism returns 

more money to these households than the costs they incur from carbon pricing. In most EU countries 

all household groups have net negative carbon costs. The exceptions with positive carbon costs are 

the richest decile in France, in Greece, and in Lithuania, the richest two deciles in Latvia, the richest 



three deciles in Denmark, and the richest five deciles in Luxemburg. As soon as we price carbon 

uniformly across the globe, all tenth decile household groups with the exception of Estonia, have 

positive carbon costs, but the lower-income household groups continue to receive more revenue than 

their incurred costs. 

We also find, consistent with existing literature (e.g. Feindt et al., 2021; Fremstad & Paul, 2019), that 

lump sum redistribution of domestic carbon pricing revenue makes policy impacts progressive. This is 

the case for all EU countries in our sample, and it holds for all the timesteps we consider. 

 

Figure 8: Comparing household incidence for income deciles in scenario 1 (top row) and scenario 4 (bottom row) without 
revenue recycling (left column) and with revenue recycling (right column). Boxplots display distributions across EU countries 

in 2020. Red dots signify averages. Note that when introducing revenue recycling in scenario 1, the incidence for all 

households through decile 6 become negative, implying a negative cost burden, e.g. households are better off due to 

the carbon price. Negative carbon costs under revenue recycling happen due to the fact that we have open economies, 

where carbon prices incidence passes through to households outside of the EU as well, while revenue is redistributed 

within countries. 

 

5 Discussion 

The research we present in this paper is based on an environmentally extended global input-output 

framework, which is available as a time series. We simulate baseline and alternative scenarios ex-post, 

asking how historical incidence of carbon pricing would have differed with more uniform policies and 

with earmarking of revenues for uniform lump sum redistribution. The availability of multiple years in 

the household expenditure microdata and economic accounts data allows for incidence calculations 

for multiple time steps, which embed changing expenditure bundles, carbon prices, technology, and 

technical coefficients. 

   

   

   

   

           

                  

                               

  

  

  

 

           

                  

                                       

 

 

 

 

 

           

                  

                                           

  

  

  

  

 

           

                  

                                                   



Consistently across all time steps we find that uniformization of carbon pricing tends to lead to more 

neutral distributional incidence, and lump sum revenue recycling makes incidence progressive in all 

cases. Furthermore, our structural decomposition suggests that incidence has both increased and 

become more regressive from 2015 to 2020. Both these developments can be attributed to changing 

carbon prices, rather than changing expenditure or changing technology and technique. These findings 

highlight the value of working with yearly input-output time series, and they respond to a research 

gap identified by Feindt et al. (2021). 

Our results add a distributional argument to the efficiency argument for a uniform marginal cost of 

pollution. Indeed, exemptions and rebates as observed between 2010 and 2020, and often introduced 

to accommodate political economy constraints, led to regressive effects of carbon pricing. In other 

words, on the expenditure side in EU countries, heterogeneity in carbon prices has made incidence 

more regressive than what would have been observed in the case of a uniform price. 

Overall, the magnitudes of our estimates of the cost burden as a share of household income (i.e., 

incidence) appear generally low, and they are lower than those estimated by Feindt et al. (2021). One 

difference is that our price data considers exemptions, which leads to lower estimated incidence than 

when assuming highest prices. Given that our price data does not take into account free allocation of 

EU ETS allowances, it is likely that the actual costs of emitting carbon for EU-ETS covered industries 

were even lower than what we calculated with. Therefore, we should consider scenario 1 as an upper 

bound estimate of what incidence actual was. Our scenario 4, which assumes a uniform price across 

the world, should provide results that are comparable to other studies that adopt uniform prices.  Our 

incidence estimates are also lower than those obtained in research on household incidence of energy 

taxation. For instance, Amores et al. (2022) find that the average incidence of housing energy taxation 

in EU countries is 4 percent on first decile households, and 1 percent on tenth decile households.  

A strength of our analysis is that we capture all indirect pricings effects. Earlier incidence studies have 

attributed carbon price regressivity to consumption bundles and emission intensities only. We 

contribute to this discussion by showing that price variation is an additional factor that in the case of 

EU countries has increased regressivity on average. Furthermore, our study highlights the importance 

of considering inter-regional-inter-sector linkages in climate policy evaluation. The largest part of 

incidence changes for EU households from 2010 to 2020 is explained by prices passing through 

product value chains. As EU economies are very open to international trade, prices outside of the EU 

have impacts on industry and households within the EU, and prices within the EU can affect EU 

exports. For the 19 EU countries in our 2020 sample, we find that the total carbon costs for consumers 

were 35% lower than the carbon costs at the production end in the same sample. Average consumer 

carbon prices tend to be lower than the carbon prices applied to domestic sectors, simply because the 

end products for consumption result from international value chains. Some of these dynamics have 

been analysed for the case of Germany in a general equilibrium setting by Böhringer et al. (2021). 

Two current climate policy developments in the EU appear distributionally progressive against the 

findings of our research. The first is the extension of carbon pricing to more sectors through the EU 

ETS II, which will be launched in 2027 (European Commission, 2023c). This extension is close to our EU 

ETS extension scenario (S3), except for the fact that the price level we assume is lower than the price 

ceiling enshrined in the legislation (EUR 45/tCO2). The second is the introduction of the EU Carbon 

Border Adjustment Mechanism (CBAM) entering into force in 2026 (European Commission, 2023a). 

This mechanism will ensure that specific high-carbon-intensity imported products will be subject to 

the same carbon price as the inner-European EU ETS, which reduces the gap between carbon prices 

of domestic products and imported products. As suggested by our scenario 4, the alignment of carbon 

prices internationally has progressive incidence for most countries within the EU. We therefore expect 



that EU ETS 2 and EU CBAM will not only improve economic efficiency, environmental effectiveness, 

and international carbon leakage risk, but also reduce regressivity of carbon pricing in the EU. 

The results of this analysis must be read keeping its limitations in mind. First, similar to comparable 

analyses by Dorband et al. (2019) Fremstad & Paul (2019) and Missbach et al. (2022),  we do not model 

demand adjustments in our alternative scenarios. This does not have implications for our baseline 

scenario, in which case substitution effects from policies in place have already taken place. However, 

in the alternative scenarios, one could expect a demand response to changing prices, at least in the 

medium- to long run. Yet, this is unlikely to lead to different qualitative results. Feindt et al. (2021) 

include price elasticities from Labandeira et al. (2017) for the most carbon-intensive sectors into their 

model, and find that this does not change regressivity in a substantial way. Given that price elasticities 

for energy products are typically low (Labandeira et al., 2017), demand for these products decreases 

little after implementing the tax. The adjustment in consumption bundles in Feindt et al.’s model 

occurs uniformly across households, as elasticities are considered to be equal across household 

groups.  

Dorband et al. (2019) discuss potential distributional implications of income-group specific price 

elasticities. They argue that  carbon tax impacts could be more progressive since price-elasticities for 

food in low-income countries tend to be larger than in high-income countries (Muhammad et al., 2011 

referenced in Dorband et al. 2019). Consequently, low-income households might react more to carbon 

pricing than high-income households, at least in  low- and middle-income countries. In the high-

income country context of the EU, these dynamics may be very different. If there is any variation of 

price elasticity across income groups, we hypothesise that counterfactual scenario results could in 

general be more regressive compared to static results, given that low-income households could be 

more affected by technological lock-in situations than high-income households, who have a higher 

ability to move, change transportation means, replace heating systems, etc. For the time being, we 

follow the review by Feindt el al. (2021) who refer to recent research suggesting that price elasticities 

do not vary significantly across household groups (Díaz & Medlock, 2021). 

A second limitation of our research relates to uncertainties surrounding our underlying data and 

methodological uncertainties. First, data are subject to continuous review and improvement. 

Concordances between UNFCCC GHG accounting categories, UN ISIC economic sectors, and UN 

COICOP expenditure accounting categories cannot be created in a single way and matching processes 

can therefore induce measurement errors. The balancing process in the creation of global input-

output time series provides an additional source of uncertainty. We also point out a methodological 

uncertainty in structural decomposition analysis, namely the assumption of factor independence. This 

assumption is most certainly violated, not least because the calculation of the Leontief matrix involves 

the inverse of total output, which is also used to calculate emissions intensities. We are not aware of 

any treatment of this problem in the decomposition literature, and we leave the creation of a 

structural decomposition formalisation in the presence of factor interdependence as an opportunity 

for future research. 

 

6 Conclusion 

Carbon pricing policies have thus far been implemented on specific fuels and industries, with 

substantial shares of emissions exempted. The implication is that different economic sectors have 

been subject to different average carbon prices, both within countries, across countries, and across 

time. The interconnections of value chains across economic sectors and countries imply that end 



product prices paid by consumers are affected by upstream carbon pricing policies in all countries. 

The goal of this paper is to evaluate the incidence of this carbon price heterogeneity around the world 

for households in the EU, and the potential distributional impacts of more comprehensive carbon 

pricing policies. 

We match the World Carbon Pricing Database (WCPD) with the Global Resource Input Output 

Assessment (GLORIA) model, and disaggregate household demand vectors into household groups 

using European Household Budget Survey Data (Eurostat HBS). The resulting framework is a global 

social accounting matrix time series with both environmental, social, and policy accounts. We use this 

framework to run static complete incidence computations, taking account of the entirety of direct and 

indirect carbon pricing effects. Next to the use of this novel dataset, another contribution of our 

research is the application of temporal structural decomposition analysis (SDA) based on LMDI 

formulation for household-group specific carbon pricing incidence. 

Our findings suggest that overall carbon pricing incidence on EU households has been smaller than 

previously estimated, as prices have not been implemented uniformly across economic sectors. The 

proportion of household expenditures spent on carbon varied between 0.2% and 1.4% in 2020. 

Importantly, we also find that impacts in most EU countries have been regressive, i.e., affecting low-

income households more than their high-income counterparts. While earlier studies attributed this 

regressivity mainly to carbon intensities of consumption, we find that non-uniform carbon prices have 

been a further factor increasing regressivity: The higher carbon pricing burden on low-income 

households does not only reflect their larger spending shares on carbon-intensive products like 

heating, but also the fact that higher-income households consume disproportionately products 

subject to lower embodied carbon prices—not least imported ones. Carbon prices are the main factor 

of incidence and regressivity change over time, while carbon-reducing technological improvements, 

technical changes in the global economy, and changes in consumption bundles have not changed 

incidence substantially. 

For most countries in the EU, we find that a uniform carbon price generating the same national fiscal 

revenues as the observed heterogenous baseline would be slightly less regressive across households. 

The least regressive impacts, on average, are observed with a uniform carbon price around the 

world, partly because it raises carbon prices embedded in EU imports. An alternative, more plausible 

scheme would be the IMF’s Carbon Price Floor proposal, which would impose different prices for 

low-, middle- and high-income countries. In our framework, this scenario provides the second least 

regressive outcome. Our findings also imply that the ongoing extension of EU ETS coverage and the 

implementation of the EU’s CBAM are likely to reduce the regressivity of carbon pricing in the EU, all 

else equal. 
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Appendix A: Matching WCPD and GLORIA 

 

Procedure Description 

The world carbon pricing dataset (WCPD) (Dolphin, 2023a, 2023b) provides carbon prices by emission 

category, following the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Detailed 

reports explaining the accounting framework are available online (IPCC, 2023). The structure of the 

IPCC emission categories is summarised in figure FA1.1 below. WCPD provides data at up to 5-digit 

IPCC category code. The total number of categories for each year and country is 77. 

Economic structure data is commonly provided at economic sector classification, following for 

example the International Standard Industrial Classification (ISIC), or the European Nomenclature of 

Economic Activities (NACE). The industrial classification used in the Global Resource Input-Output 

Assessment model (GLORIA) (Industrial Ecology Lab, 2023) is based on ISIC rev.4, and provided at 120 

sector resolution for each year and country. We aggregate sectors to 60 for each country, and 

aggregate countries to 54 regions, reflecting the needs for our analysis and data availability from 

Eurostat. Table TA1 below lists all resulting sectors. Greenhouse-gas emission satellite data is provided 

for each sector in a disaggregated format, consistent with the EU Emissions Database for Global 

Atmospheric Research (EDGAR) (European Commission, 2023). The disaggregation follows the IPCC 

2006 classification, and therefore enables us to use a precise mapping process for imputing emissions-

weighted carbon prices at the GLORIA sector resolution. 

For our analysis, we match WCPD data to GLORIA sectors using a process-based algorithm. GLORIA 

CO2 emission satellites are provided in 73 IPCC categories per country-sector, therefore the first step 

is an aggregation of the WCPD data from 77 to 73 categories. Where low level subcategories map onto 

higher level categories, we impose an emissions-weighted average carbon price. As a second step, we 

multiply for each sector and country the categorical emissions with the categorical carbon prices and 

divide by total emissions. The result is a country-sector specific emission-weighted carbon price. 

 

Code 

Matching scripts are available on the project repository, subdirectory datamatch/2_ecp_gloria 

(https://github.com/jmmnmbu/ecp_distrib/tree/main/datamatch/2_ecp_gloria). Access available 

upon request. 

 

Checkplots 

All post-matching price plots, cross sectoral and cross country, can be viewed in the project repository, 

subdirectory descr_hl3/price_var. Access available upon request. We add panel plots for the year 2020 

at the end of this appendix section. 

 

https://github.com/jmmnmbu/ecp_distrib/tree/main/datamatch/2_ecp_gloria


 

Figure FA.A.1: IPCC 2006 Greenhouse Gas Inventory framework (IPCC 2023, p.6) 

 

 



Table TAA1: GLORIA Sectors Aggregated  

No. Sector No. Sector 

1 Agriculture 31 Machinery and equipment 
2 Forestry 32 Motor vehicles & transport equip 
3 Fishing 33 Repair and installation of machinery 
4 Coal extraction 34 Computers, electronics & optical 
5 Petroleum extraction 35 Electrical equipment 
6 Gas extraction 36 Furniture & other manuf 
7 Other mining & quarrying 37 Electric power 
8 Meat 38 Gas supply 
9 Fish 39 Water & sewage 
10 Cereals 40 Waste & recycling 
11 Veg 41 Construction 
12 Fruit 42 Wholesale and retail trade; repair of motor vehicles 

and motorcycles 
13 Other food 43 Road transport 
14 Dairy 44 Rail transport 
15 Beverage 45 Pipeline transport 
16 Tobacco 46 Water transport 
17 Textiles & leather 47 Air transport 
18 Sawmill, pulp, paper 48 Services to transport 
19 Printing 49 Postal & courier 
20 Coke oven products 50 Hospitality 
21 Refined petroleum products 51 Publishing 
22 Fertilizers 52 Telecomm 
23 Other chemicals 53 IT 
24 Pharma 54 Finance & Insurance 
25 Paint, glues, detergents, other 55 Property and real estate 
26 Rubber & plastic 56 Government; social security; defence; public order 
27 Cement, lime and plaster products 57 Education 
28 Other non-metallic minerals 58 Human health and social work activities 
29 Basic metals 59 Arts, entertainment and recreation 
30 Fabricated metal products 60 Other services 
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Figure FA.A.2: Post-matching emissions-weighted carbon price plots for sectors 1 to 16. Countries ordered according to price for each sector. 



 

Figure FA.A.3: Post-matching emissions-weighted carbon price plots for sectors 17 to 32. Countries ordered according to price for each sector. 



 

Figure FA.A.4: Post-matching emissions-weighted carbon price plots for sectors 33 to 48. Countries ordered according to price for each sector. 



 

Figure FA.A.5: Post-matching emissions-weighted carbon price plots for sectors 49 to 61. Countries ordered according to price for each sector. 



Appendix B: Matching HBS Data with GLORIA 

 

Introduction 

We use household expenditure data from the European Household Budget Survey (HBS) (Eurostat, 

2023). This data is based on the UN Classification of Individual Consumption by Purpose (COICOP) – a 

framework made for analyses of household consumption statistics (UNSD, 2018). We use the scientific 

use level 3 (four digit) resolution data, which amounts to 112 consumption categories in total. Not all 

EU countries are provided in the HBS scientific use files, and some of those that are provided come 

with missing data.  

The COICOP system of the household expenditure data does not correspond to the ISIC system of the 

GLORIA input-output data in a unique way. ISIC stands for International Standard Industrial 

Classification of All Economic Activities, and is commonly used for multi-sector economic analyses 

(UNSD, 2008). To map household expenditure data to our analytical framework, we use a process that 

maintains the relative differences in expenditure size and expenditure composition between 

household quantiles but rescales the data so that totals are consistent with the demand accounts of 

GLORIA. For sector-specific demands, the difference between consumer groups is assumed to be equal 

across product-origin. For example, if the second consumer quantile buys 1.5 times more apples than 

the first consumer quantile, then this relation applies to both domestically sourced apples as well as 

imported apples. 

Our method provides a vector 𝐫 of household quantile expenditure by GLORIA sectors. It requires as 

inputs: 

• Total consumer demand by country across ISIC sectors denoted vector 𝐫, where the number of 

elements is K 

• Demand of a certain household income quantile by COICOP category, denoted vector 𝐡, where 

the number of elements is I. The matrix including all household groups is denoted 𝐇. 

• The totals of all household income quantiles by COICOP category, denoted vector 𝐭, with number 

of elements I. 

• Concordance matrix 𝐂 of dimension K x I with elements 0 and 1. Concordance defines whether a 

COICOP category and a GLORIA sector are associated or not. Element 0 means there is no 

concordance, element 1 means there is concordance. 

The method consists of three main steps. 

 

Step 1: Compute disaggregation keys for COICOP categories across GLORIA sectors 

We start out by multiplying our concordance matrix 𝐂 with total expenditure 𝐭 and aggregating across 

columns by multiplying with a vector of ones 𝐮. 

𝒗 = 𝑪 ∗ 𝑑𝑖𝑎𝑔(𝒕) ∗ 𝒖 (𝐴. 𝐵. 1) 

The resulting vector 𝐯 is of dimension K x 1 and provides for each GLORIA sector k the sum of COICOP 

category totals that are associated with it. As a next step we take the inverse values of 𝐯 and multiply 

them with our concordance table. In cases where elements are divided by zero, we impose the 

element result to be equal to 0. Then we multiply the result with our total expenditure vector. 



𝑾 = 𝑑𝑖𝑎𝑔(𝒗−1) ∗ 𝑪 ∗ 𝑑𝑖𝑎𝑔(𝒕) (𝐴. 𝐵. 2) 

The resulting matrix 𝐖 has the same dimension as the concordance matrix. Elements of 𝐖 can assume 

three different kinds of values. They are: 

• equal to zero at each element where concordance is zero, 

• equal to one at each element where only a single COICOP category maps onto the GLORIA 

sector, 

• equal to a fraction between zero and one where several COICOP categories map onto the 

GLORIA sector. This fraction is equal to the proportion of the COICOP category relative to all 

COICOP categories that are associated with the respective GLORIA sector. 

 

Step 2: Compute scaling keys to account for heterogenous household groups 

Next we include our household group specific data into the calculation. Note that the individual 

household quantile expenditure 𝐡 constitutes a part of 𝐭: 

𝒕 = 𝑯 ∗ 𝒖 (𝐴. 𝐵. 3) 

We multiply the inverse elements of total expenditure 𝐭 with the household quantile expenditure 𝐡. 

Again, in cases where elements are divided by zero, we impose the element result to be equal to 0. 

𝑴 = 𝑪 ∗ 𝑑𝑖𝑎𝑔[𝑑𝑖𝑎𝑔(𝒕−1) ∗ 𝒉] (𝐴. 𝐵. 4) 

The term in square brackets provides a vector of dimension I x 1, essentially giving us the proportion 

of total expenditure for a COICOP class that is spent by the household group in question. Diagonalising 

this vector and post-multiplying it with our concordance matrix provides us with matrix 𝐌, which gives 

us household group expenditure proportion for each element where concordance is equal to one. 

 

Step 3: Compute rescaled demand of a household group fitted to GLORIA 

In order to create a weighting vector to yield our desired result, we now compute the Hadamard 

product of our matrices 𝐌 and 𝐖 and sum across columns. 

𝒒 = [𝑴 ° 𝑾] ∗ 𝒖 (𝐴. 𝐵. 5) 

The resulting vector 𝐪 is again K x 1 and gives us the fractions of final demand for which the household 

group in question is accountable. This vector can be applied to all GLORIA sectors that are associated 

with at least one COICOP category. One challenge is that not all GLORIA sectors can be connected to 

the household consumption classification system. Basic metals, for example, is a primary 

manufacturing sector that does not relate any COICOP category because consumers tend to consume 

fabricated products rather than raw materials. In most cases the final demand for these sectors in 

GLORIA is small, as their output is mainly used as inputs to downstream sectors. It does occur, 

however, that consumer demand for such sector outputs is non-zero in GLORIA. Where that is the 

case, we need to allocate this demand across household groups, without having any sector-specific 

distribution key available from the COICOP data. To minimise subjectivity, we choose a key that 

reflects total expenditure difference between household groups. 

ℎ1 + ℎ2 + ℎ3
𝑡1 + 𝑡2 + 𝑡3

=
𝑢𝑇 ∗ ℎ

𝑢𝑇 ∗ 𝑡
=
ℎ𝑡𝑜𝑡𝑎𝑙
𝑡𝑡𝑜𝑡𝑎𝑙

(𝐴. 𝐵. 6) 



The final vector to identify parts of 𝐟 that can be attributed to the household group in question is then 

given by 𝐛, which is in most cases equal to 𝐪, and in zero-concordance cases it is equal to 
ℎ𝑡𝑜𝑡𝑎𝑙

𝑡𝑡𝑜𝑡𝑎𝑙
. 

𝒃 = {

ℎ𝑡𝑜𝑡𝑎𝑙
𝑡𝑡𝑜𝑡𝑎𝑙

𝑓𝑜𝑟 𝑣𝑒𝑐𝑡𝑜𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑤ℎ𝑒𝑟𝑒 𝑣 = 0

𝑞 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(𝐴. 𝐵. 7) 

To obtain absolute demand values for the household group across all GLORIA sectors we multiply the 

fractions given by 𝐛 with our GLORIA demand vector 𝐟. 

𝒓 = 𝑑𝑖𝑎𝑔(𝒃) ∗ 𝒇 (𝐴. 𝐵. 8) 

Vector 𝐫 is of the same dimension of 𝐟 and constitutes the part of 𝐟 that is consumed by the household 

quantile in question. All individual 𝐫 add up to total GLORIA demand, that is: 

𝒇 = 𝑹 ∗ 𝒖 (𝐴. 𝐵. 9) 

 

Example 

Consider the following example where we assume a simple case of three GLORIA sectors and three 

COICOP categories. 

𝑪 = (
0 0 0
0 0 1
1 1 0

) ; 𝒕 = (

𝑡1
𝑡2
𝑡3

) (𝐴. 𝐵. 10) 

Step 1 

Vector 𝐯 would then be: 

𝒗 = (
0
𝑡3

𝑡1 + 𝑡2

) (𝐴. 𝐵. 11) 

Our matrix 𝐖 would then be: 

𝑾 =

(

 
 

0 0 0

0 0
𝑡3
𝑡3

𝑡1
𝑡1 + 𝑡2

𝑡2
𝑡1 + 𝑡2

0
)

 
 
= (

0 0 0
0 0 1
𝑡1

𝑡1 + 𝑡2

𝑡2
𝑡1 + 𝑡2

0
) (𝐴. 𝐵. 12) 

Step 2 

Assuming a vector of household group specific expenditure: 

𝒉 = (

ℎ1
ℎ2
ℎ3

) (𝐴. 𝐵. 13) 

Our matrix 𝐌 would be: 



𝑴 =

(

 
 

0 0 0

0 0
ℎ3
𝑡3

ℎ1
𝑡1

ℎ2
𝑡2

0
)

 
 

(𝐴. 𝐵. 14) 

Step 3 

Assume our GLORIA demand to be given by: 

𝒇 = (

𝑓1
𝑓2
𝑓3

) (𝐴. 𝐵. 15) 

First, we compute the Hadamard product: 

𝑴 ° 𝑾 =

(

 
 

0 0 0

0 0
ℎ3
𝑡3

ℎ1
𝑡1

ℎ2
𝑡2

0
)

 
 
°(

0 0 0
0 0 1
𝑡1

𝑡1 + 𝑡2

𝑡2
𝑡1 + 𝑡2

0
) =

(

 
 

0 0 0

0 0
ℎ3
𝑡3

ℎ1
𝑡1 + 𝑡2

ℎ2
𝑡1 + 𝑡2

0
)

 
 

(𝐴. 𝐵. 16) 

Summing across columns gives us the weighting vector: 

𝒒 =

(

 
 

0
ℎ3
𝑡3

ℎ1 + ℎ2
𝑡1 + 𝑡2)

 
 

(𝐴. 𝐵. 17) 

Adding our process for zero-concordance cases: 

𝒃 =

(

 
 
 
 

ℎ𝑡𝑜𝑡𝑎𝑙
𝑡𝑡𝑜𝑡𝑎𝑙
ℎ3
𝑡3

ℎ1 + ℎ2
𝑡1 + 𝑡2)

 
 
 
 

(𝐴. 𝐵. 18) 

We can now calculate our household group specific demand, scaled to GLORIA: 

𝒓 =

(

 
 
 
 

ℎ𝑡𝑜𝑡𝑎𝑙
𝑡𝑡𝑜𝑡𝑎𝑙

0 0

0
ℎ3
𝑡3

0

0 0
ℎ1 + ℎ2
𝑡1 + 𝑡2)

 
 
 
 

∗ (

𝑓1
𝑓2
𝑓3

) =

(

 
 
 
 

ℎ𝑡𝑜𝑡𝑎𝑙
𝑡𝑡𝑜𝑡𝑎𝑙

∗ 𝑓1

ℎ3
𝑡3
∗ 𝑓2

ℎ1 + ℎ2
𝑡1 + 𝑡2

∗ 𝑓3)

 
 
 
 

(𝐴. 𝐵. 18) 

 

Concordance Table 

We create our concordance table by working through the UN ISIC classification guideline (UNSD, 2008) 

and the COICOP classification guideline (UNSD, 2018) and defining which COICOP level 3 categories to 

match with each ISIC sector. Table A2.2 provides an overview. 



Table TAB1: GLORIA – COICOP Concordance 

GLORIA Sector COICOP Category 

Agriculture HE0933, HE0934 
Forestry HE0454 
Fishing  
Coal extraction HE0454 
Petroleum extraction  
Gas extraction  
Other mining & quarrying  
Meat HE0112 
Fish HE0113 
Cereals HE0111 
Veg HE0117 
Fruit HE0116 
Other food HE0114, HE0115, HE0118, HE0119 
Dairy HE0114 
Beverage HE0121, HE0122, HE0211, HE0212, HE0213 
Tobacco HE0220 
Textiles & leather HE0311, HE0312, HE0313, HE0321, HE0512, HE0520, HE0561 
Sawmill, pulp, paper HE0431, HE056, HE0954 
Printing HE0951, HE0952, HE0953, HE0954 
Coke oven products HE0454 
Refined petroleum products HE0453, HE0722 
Fertilizers HE0933 
Other chemicals HE0561, HE1213 
Pharma HE0611 
Paint, glues, detergents, other HE0431, HE0561 
Rubber & plastic HE0431, HE0540, HE0552, HE0561, HE0612, HE0721, HE0931, HE1213 
Cement, lime and plaster products HE0431 
Other non-metallic minerals HE0431, HE0540 
Basic metals  
Fabricated metal products HE0431, HE0531, HE0540, HE0522, HE0561, HE1213 
Machinery and equipment HE0551, HE0921 
Motor vehicles & transport equip HE0711, HE0712, HE0713, HE0714, HE0721, HE0921 
Repair and installation of machinery HE0923 
Computers, electronics & optical HE0613, HE0820, HE0911, HE0912, HE0913, HE0914, HE0922, HE0931, 

HE1212, HE1231 
Electrical equipment HE0431, HE0531, HE0532 
Furniture & other manuf HE0511, HE0613, HE0721, HE0922, HE0932, HE0954, HE1231 
Electric power HE0451 
Gas supply HE0452 
Water & sewage HE0441, HE0443, HE0455 
Waste & recycling HE0442 
Construction HE0432 
Wholesale and retail trade; repair of 
motor vehicles and motorcycles 

HE0111, HE0112, HE0113, HE0114, HE0115, HE0116, HE0117, HE0118, 
HE0119, HE0121, HE0122, HE0211, HE0212, HE0213, HE0220, HE0311, 
HE0312, HE0313, HE0321, HE0431, HE0453, HE0454, HE0511, HE0512, 
HE0520, HE0531, HE0532, HE0540, HE0551, HE0552, HE0561, HE0611, 
HE0612, HE0613, HE0711, HE0712, HE0713, HE0714, HE0721, HE0722, 
HE0723, HE0820, HE0911, HE0912, HE0913, HE0914, HE0921, HE0922, 
HE0931, HE0932, HE0933, HE0934, HE0951, HE0952, HE0953, HE0954, 
HE1212, HE1213, HE1231, HE1232 

Road transport HE0732, HE0735, HE0736, HE0960 
Rail transport HE0731, HE0735, HE0736, HE0960 
Pipeline transport  
Water transport HE0734, HE0735, HE0736, HE0960 
Air transport HE0733, HE0735, HE0736, HE0960 
Services to transport HE0731, HE0732, HE0733, HE0734, HE0735, HE0736, HE0960 
Postal & courier HE0810 
Hospitality HE0960, HE1111, HE1112, HE1120 
Publishing HE0951, HE0952, HE0953, HE0954 
Telecomm HE0830 
IT HE0830 



Finance & Insurance HE1252, HE1253, HE1254, HE1255, HE1262 
Property and real estate HE0411, HE0412, HE0421, HE0422 
Government; social security; defence; 
public order 

 

Education HE1010, HE1020, HE1030, HE1040, HE1050 
Human health and social work 
activities 

HE0621, HE0622, HE0623, HE0630, HE1240 

Arts, entertainment and recreation HE0941, HE0942, HE0960 
Other services HE0314, HE0322, HE0444, HE0513, HE0533, HE0562, HE0723, HE0724, 

HE0915, HE0923, HE0935, HE1211, HE1231, HE1232, HE1270 

 

Matching of Household Satellites 

GLORIA satellites are provided for industries as well as for final consumption accounts. Final 

consumption satellites relate to environmental and social externalities that are caused directly by 

household consumption. They are not included in the economic value creation process captured by 

the input-output matrix and are therefore not considered as embodied in the consumption of goods 

and services in GLORIA. For CO2 emissions, direct household externalities are limited to two IPCC 

emission categories, namely 1A3B (energy emissions from fuel combustion in road transport – 

essentially fuel for households’ personal vehicles) and 1A4 (energy emissions from fuel combustion in 

other sectors – essentially other fuels that households burn). 

We allocate these household emissions directly to household quantiles by imposing household 

expenditure for COICOP category HE0722 (fuels and lubricants for personal transport equipment) as 

a key to allocate IPCC category 1A3B emissions, and the sum of household expenditure for COICOP 

categories HE0452 (gas), HE0453 (liquid fuels), and HE0454 (solid fuels) as a key to allocate IPCC 

category 1A4 emissions. 

 

Code 

Matching scripts are available on the project repository, subdirectory datamatch/3_hbs_gloria 

(https://github.com/jmmnmbu/ecp_distrib/tree/main/datamatch/3_hbs_gloria). Access available 

upon request. 
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Appendix C 

 

Description 

We use Additive Structural Decomposition Analysis to disentangle the contributions of individual 
determinants to a total change, in our case the determinants of incidence, which we also call relative 
carbon cost. Recall our function to compute the outcome: 

𝑟𝑐𝑐 = (𝑑𝑖𝑎𝑔(𝒆) ∗ 𝒑)𝑇 ∗ 𝑳 ∗ 𝒚 ∗ 𝑎−1 + 𝒉𝑇 ∗ 𝒌 ∗ 𝑎−1 (𝐴. 𝐶. 1) 

Where bold small letters are vectors, bold capital letters are matrices, and others are scalars. We 
follow the algorithm developed by Wood & Lenzen (2006) to deal with zero value problems. An 
application for energy use based on input-output data from Brazil has been done by Wachsmann et 
al. (2009). We want to decompose the change in relative carbon costs between two steps 1 and 0 into 
individual additive components, so our objective function is: 

∆𝑟𝑐𝑐 = ∆𝑟𝑐𝑐(𝒆) + ∆𝑟𝑐𝑐(𝒑) + ∆𝑟𝑐𝑐(𝑳) + ∆𝑟𝑐𝑐(𝒚) + ∆𝑟𝑐𝑐(𝑎−1) + ∆𝑟𝑐𝑐(𝒉) + ∆𝑟𝑐𝑐(𝒌) (𝐴. 𝐶. 2) 

The first step to decompose ∆𝑟𝑐𝑐 is to express the total differential of relative carbon cost as the sum 
of all its partial differentials, using the chain rule. 

𝑑𝑟𝑐𝑐 =
𝜕𝑟𝑐𝑐

𝜕𝒆
𝑑𝒆 +

𝜕𝑟𝑐𝑐

𝜕𝒑
𝑑𝒑 +

𝜕𝑟𝑐𝑐

𝜕𝑳
𝑑𝑳 +

𝜕𝑟𝑐𝑐

𝜕𝒚
𝑑𝒚 +

𝜕𝑟𝑐𝑐

𝜕𝑎−1
𝑑𝑎−1 +

𝜕𝑟𝑐𝑐

𝜕𝒉
𝑑𝒉 +

𝜕𝑟𝑐𝑐

𝜕𝒌
𝑑𝒌 (𝐴. 𝐶. 3) 

The total difference in our outcome variable is its end value subtracted by its original value. This total 
difference can be approximated as the sum of all infinitesimally small changes by integrating across 
its total differential. 

∆𝑟𝑐𝑐 = 𝑟𝑐𝑐1 − 𝑟𝑐𝑐0 = ∫ 𝑑𝑟𝑐𝑐
𝑟𝑐𝑐1

𝑟𝑐𝑐0

(𝐴. 𝐶. 4) 

If we assume all factors to be independent, we can expand this last expression as: 

∆𝑟𝑐𝑐 = ∫
𝜕𝑟𝑐𝑐

𝜕𝒆
𝑑𝒆 +

𝒆𝟏

𝒆𝟎

∫
𝜕𝑟𝑐𝑐

𝜕𝑝
𝑑𝒑 +

𝒑𝟏

𝒑𝟎

∫
𝜕𝑟𝑐𝑐

𝜕𝑳
𝑑𝑳 +

𝑳𝟏

𝑳𝟎

∫
𝜕𝑟𝑐𝑐

𝜕𝒚
𝑑𝒚 +∫

𝜕𝑟𝑐𝑐

𝜕𝑎−1
𝑑𝑎−1

𝑎−11

𝑎−10

𝒚𝟏

𝒚𝟎

+∫
𝜕𝑟𝑐𝑐

𝜕𝒉
𝑑𝒉 +

𝒉𝟏

𝒉𝟎

∫
𝜕𝑟𝑐𝑐

𝜕𝒌
𝑑𝒌

𝒌𝟏

𝒌𝟎

(𝐴. 𝐶. 5)

 

Using the first term in A4.5 as an example and changing notation to make the computational loops 
intuitive to read: 

∆𝑟𝑐𝑐(𝑒) = ∫
𝜕𝑟𝑐𝑐

𝜕𝑒
𝑑𝑒

𝑒1

𝑒0

= 𝑒1𝑝𝐿𝑦𝑎−1 − 𝑒0𝑝𝐿𝑦𝑎−1 =∑𝑒𝑛
1𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎

−1 − 𝑒𝑛
0𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎

−1

𝑛𝑜

 

=∑(𝑒𝑛
1 − 𝑒𝑛

0) ∗ 𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎
−1

𝑛𝑜

=∑∆𝑒𝑛 ∗ 𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎
−1

𝑛𝑜

(𝐴. 𝐶. 6) 

Now we make a modification, extending nominator and denominator by 𝑒𝑛: 

∆𝑟𝑐𝑐(𝑒) =∑
∆𝑒𝑛
𝑒𝑛
∗ 𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎

−1

𝑛𝑜

(𝐴. 𝐶. 7) 

At this point, we need to decide which values to impose as weights when calculating our individual 
contributions. The suggestion by Ang & Choi (1997) and Ang & Liu (2001) is to use the logarithmic 



mean formulation as a weight, which in our case boils down to: 

𝑒𝑛 =
𝑒𝑛
1 − 𝑒𝑛

0

ln(𝑒𝑛
1) − ln(𝑒𝑛

0)
=

∆𝑒𝑛
∆ ln(𝑒𝑛)

(𝐴. 𝐶. 8) 

And: 

𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎
−1 =

∆(𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎
−1)

∆(ln 𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎
−1)

(𝐴. 𝐶. 9) 

Substituting A4.8 and A4.9 into A4.7 and rearranging terms gives us the LMDI formulation of the 
contribution of changing emission intensities: 

∆𝑟𝑐𝑐(𝑒) =∑
∆(𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎

−1)

∆(ln 𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎
−1)

∗ ln
𝑒𝑛
1

𝑒𝑛
0

𝑛𝑜

(𝐴. 𝐶. 10) 

Accordingly, the contribution of changing carbon prices on sectors is: 

∆𝑟𝑐𝑐(𝑝) =∑
∆(𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎

−1)

∆(ln 𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎
−1)

∗ ln
𝑝𝑛
1

𝑝𝑛
0

𝑛𝑜

(𝐴. 𝐶. 11) 

The contribution of changing economic structures is: 

∆𝑟𝑐𝑐(𝐿) =∑
∆(𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎

−1)

∆(ln 𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎
−1)

∗ ln
𝐿𝑛𝑜
1

𝐿𝑛𝑜
0

𝑛𝑜

(𝐴. 𝐶. 12) 

The contribution of changing consumption bundles is: 

∆𝑟𝑐𝑐(𝑦) =∑
∆(𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎

−1)

∆(ln 𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎
−1)

∗ ln
𝑦𝑜
1

𝑦𝑜
0

𝑛𝑜

(𝐴. 𝐶. 13) 

The contribution of changing totals scales of consumption is: 

∆𝑟𝑐𝑐(𝑎−1) =∑
∆(𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜 ∗ 𝑎

−1)

∆(ln 𝑒𝑛𝑝𝑛𝐿𝑛𝑜𝑦𝑜𝑎
−1)

∗ ln
𝑎−1

1

𝑎−1
0

𝑛𝑜

+∑
∆(ℎ𝑣𝑘𝑣𝑎

−1)

∆(ln ℎ𝑣𝑘𝑣𝑎
−1)

∗ ln
𝑎−1

1

𝑎−1
0

𝑣

(𝐴. 𝐶. 14) 

The contribution of changing direct household emissions is: 

∆𝑟𝑐𝑐(ℎ) =∑
∆(ℎ𝑣𝑘𝑣𝑎

−1)

∆(ln ℎ𝑣𝑘𝑣𝑎
−1)

∗ ln
ℎ𝑣
1

ℎ𝑣
0

𝑣

(𝐴. 𝐶. 15) 

And the contribution of changing carbon prices on direct household emissions is: 

∆𝑟𝑐𝑐(ℎ) =∑
∆(ℎ𝑣𝑘𝑣𝑎

−1)

∆(ln ℎ𝑣𝑘𝑣𝑎
−1)

∗ ln
𝑘𝑣
1

𝑘𝑣
0

𝑣

(𝐴. 𝐶. 16) 

We run these decompositions for each time step and each household quantile in each country. 

 

Code 

Decomposition computations are available on the project repository, subdirectory decomp 

(https://github.com/jmmnmbu/ecp_distrib/tree/main/decomp). Access available upon request. 

 

https://github.com/jmmnmbu/ecp_distrib/tree/main/decomp
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Appendix D 

 

Introduction 

As a basic analysis of general tendencies across countries and scenarios, this section contains results 
of some simple correlation analyses. The sample is a panel of cross-sections over three timesteps. It 
is not balanced due to missing Eurostat HBS data. Economic data is taken from the WorldBank API 
through R package wbstats. All other data comes from the results directory of this project. 

 

Code 

Regressions are available on the project repository, subdirectory results_hl3 

(https://github.com/jmmnmbu/ecp_distrib/tree/main/results_hlr3). Access available upon request. 

 

Regressivity in the Baseline 

Here we regress regressivity in the baseline at country-level on economic indicators, namely: 

• GDP per capita (PPP) 

• Population size 

• Carbon intensity of the economy (kg/USD) 

• m_price (the emissions-weighted average carbon price in the economy, taking all sectors into 
account) 

• h_price (the highest advertised carbon price in the economy, which is not applied uniformly 
across all sectors)  

We test a linear model fit for each case.

https://github.com/jmmnmbu/ecp_distrib/tree/main/results_hlr3


 

Figure FA.D.1: Correlation analysis regressivity (as measured by suits index) on economic indicators (columns) across years (rows). 



 

Figure FA.D.2: Correlation analysis regressivity (as measured by p10p90 index) on economic indicators (columns) across years (rows).



Regressivity Changes in Alternative Scenarios  

Here we regress regressivity changes at country-level on economic indicators, namely: 

• GDP per capita (PPP) 

• Carbon intensity of the economy (kg/USD) 

• m_price (the emissions-weighted average carbon price in the economy, taking all sectors into 
account) 

We test a linear model fit for each case.



 

Figure FA.D.3: Correlation analysis regressivity change (as measured by suits index change) on GDP per capita, for different alternative scenarios (columns) across years (rows).



 

Figure FA.D.4: Correlation analysis regressivity change (as measured by p10p90 index change) on GDP per capita, for different alternative scenarios (columns) across years (rows).



 

Figure FA.D.5: Correlation analysis regressivity change (as measured by suits index change) on carbon intensity, for different alternative scenarios (columns) across years (rows).



 

Figure FA.D.6: Correlation analysis regressivity change (as measured by p10p90 index change) on carbon intensity, for different alternative scenarios (columns) across years (rows).



 

Figure FA.D.7: Correlation analysis regressivity change (as measured by suits index change) on average carbon price, for different alternative scenarios (columns) across years (rows).



 

Figure FA.D.8: Correlation analysis regressivity change (as measured by p10p90 index change) on average carbon price, for different alternative scenarios (columns) across years (rows) 
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