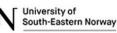
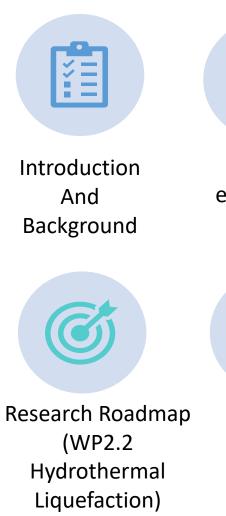


Norwegian Centre for Environmentfriendly Energy Research

Bio4Fuels

Norwegian Centre for Sustainable Bio-Based Fuel and Energy


Continuous vs. Batch hydrothermal liquefaction of Nordic biomass Nikalet Everson, SINTEF Energy



Overview

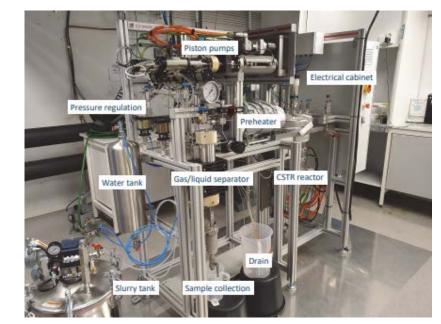
Our equipment

Results

Continuous vs Batch

BIO4 FUELS

J'


Hurdles and Final Steps

Why do we need oil from biological materials?

- Renewable drop-in fuels are more relevant for fossil fuel replacement in many sectors
- Use of biomass residues is not only responsible but necessary for a circular economy
- HTL relies on the same techniques as fossil fuels with shorter times and better inputs

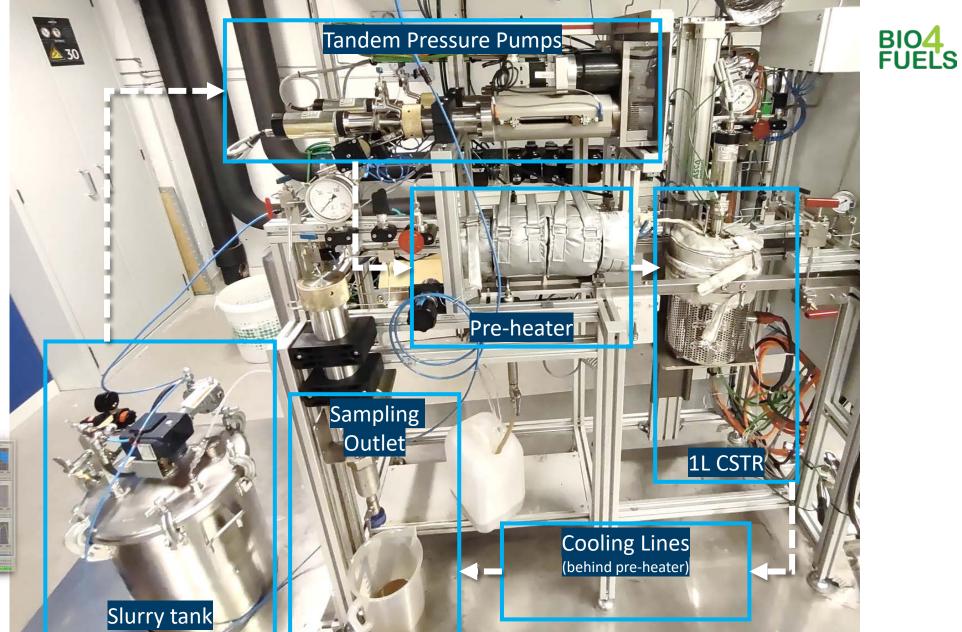
Refresher on Hydrothermal Liquefaction

- Hydrothermal processes: Supercritical or subcritical conditions
 - Increases solubility of organics
 - Water acts as solvent, reactant, and catalyst

Critical point of water: 374 °C, 220 bar

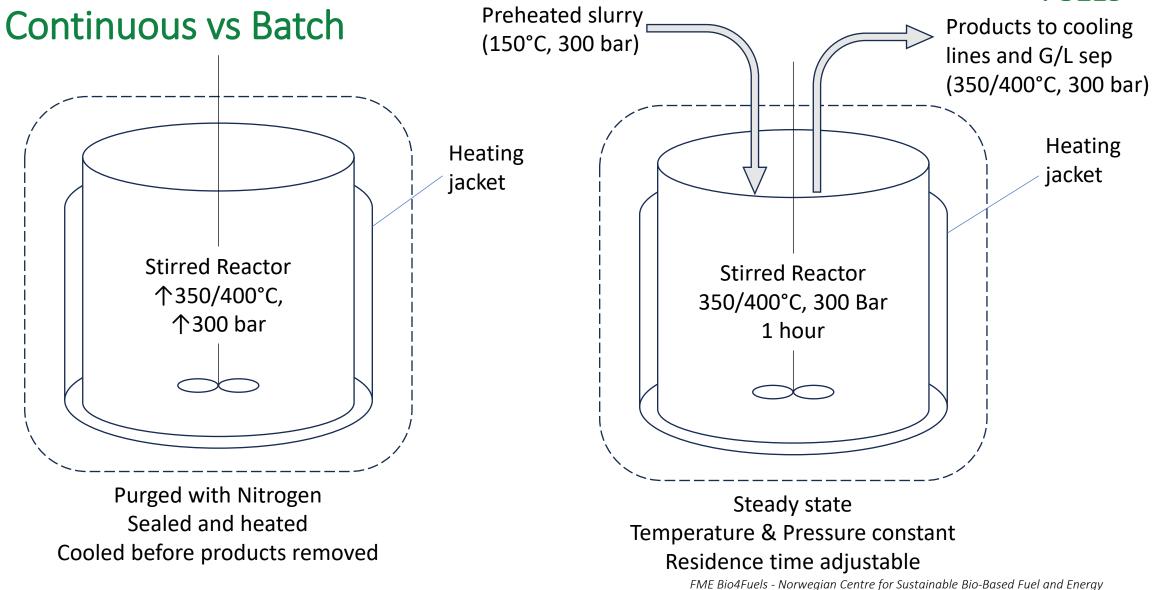
Wood powder slurry

Our research: 350 °C, 300 bar 400 °C, 300 bar



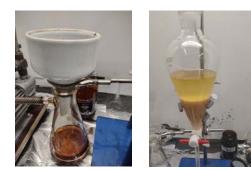
Raw bio-oil product FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy Speed and pressure created by Pressure pumps

All systems tracked on connected PC



FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

Continuous Reactor for Hydrothermal Experiments



Separation of products

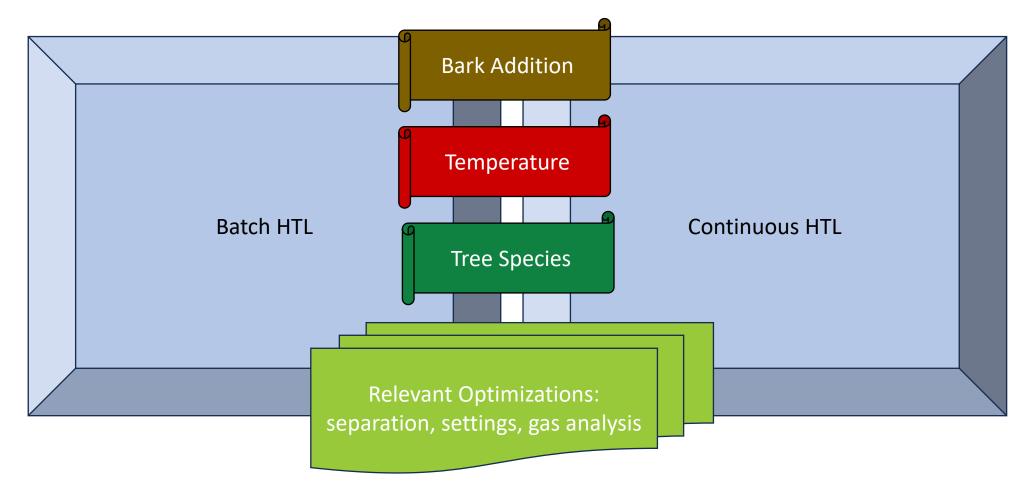
Product mix from reactor

1 hour residence time

 Initial separation of water and oil
Filtering of
hydrochar in reactor
Extraction of
organics/oil from
water phase

Separated products

Hydrochar



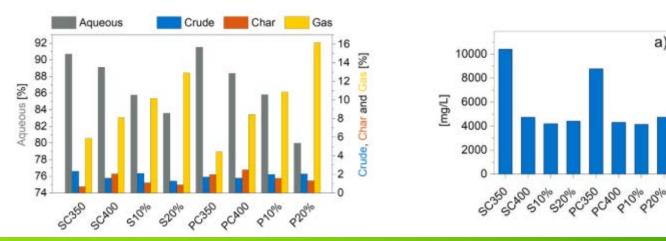
Raw bio-oil

Research Roadmap

Batch HTL Research for Bio4Fuels

- Investigate effects of...
 - <u>Temperature</u> (350 °C vs. 400 °C)
 - <u>Feedstock</u> (gran vs. furu)
 - <u>Inclusion of bark (5 wt.%, 10 wt.%, 15 wt.%)</u>
 - Separation tests with toluene

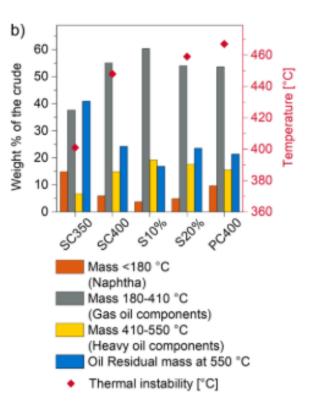
Slurry ingredients: wood powder, bark, water, catalyst


Slurry to batch reactions

Slurry to continuous reactions

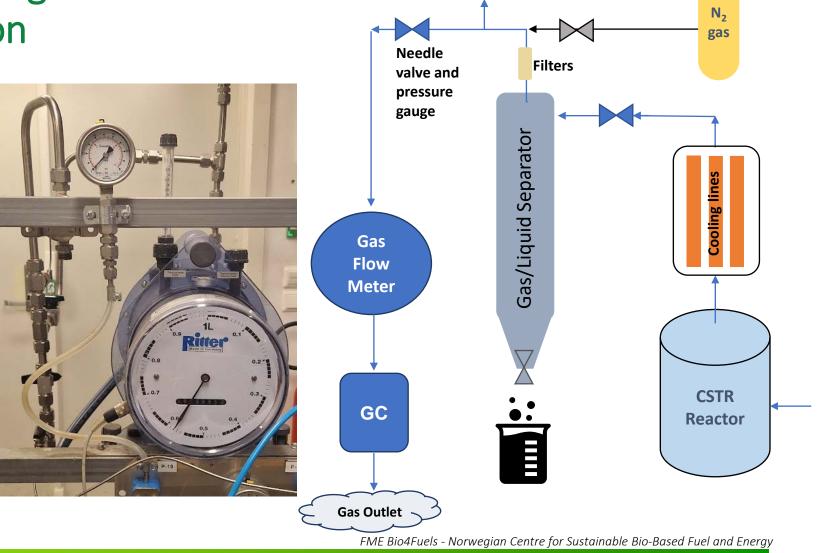
Batch Results

- Higher yields from Pine than from Spruce ullet
- Inclusion of bark does not result in noticeable changes in product yields
- Higher temperatures resulted in more C-O groups and lower temps had higher aromatics
- Much of the weight of biocrudes is from a range of gas oil components
- Oil from supercritical conditions (400C) was of higher quality than subcritical (350C)
- Organics in aqueous phase depended primarily on temperature


Guest Editors: Rubens Maciel Filho, Eliseo Ranzi, Leonardo Tognott opyright © 2022, AIDIC Servizi S.r.l. BN 978-88-95608-90-7: ISSN 2283-9

a)

DOI: 10.3303/CET2292017


Hydrothermal Liquefaction of Bark-containing Nordic Biomass

Judit Sandquist*, Nikalet Everson, Asmira Delic, Maria N.P. Olsen SINTEF Energy Research, Postboks 4761 Torgarden, Trondheim, Norway Judit.Sandquist@sintef.no

Reactor upgrades for gas detection for continuous operation

- New flow meter connected
- Installation of gas mixer system for option to use carrier gasses (e.g. Nitrogen)

Outlet if ≤ 2bar

BIO4 FUELS

Continuous Reactions Experimental Matrix

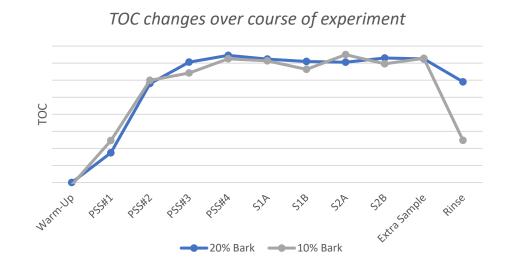
- Same conditions tested as for Batch
 - Pine and spruce
 - 350°C/ 400°C
 - Bark : 10%, 20%
- Additional test for stirring speed
- Tested mixed wood species

Oil from 400 °C, Continuous

Oil from 350°C, Continuous

Hydrochar

- More char observed with bark.
- As mentioned, more char produced at lower speeds of stirring
- Slightly higher char at 400C than 350C
- Hydrochar produced was about 1-3% of biomass input by weight



Results removed – publication of data to come after completion of work

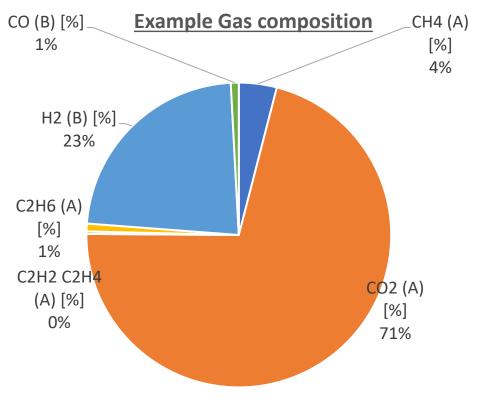
Total Organic Carbon – Aqueous Phase

- More carbon is converted to products in supercritical than subcritical conditions
- Second steady-state sample tends to have higher TOC
 - Possible lower conversion rate as char accumulates in reactor or,
 - More oil exiting system later in reaction, some of which is miscible in aqueous phase
- Over the course of the entire experiment, TOC seems stable once steady state is reached

Results removed – publication of data to come after completion of work

Bio-oil yields

- Analysis in progress for quality and energy values
- Yields are in alignment with literature (25-35% oil)



Results removed – publication of data to come after completion of work

Gas Production

- More gas for samples with bark included
- Lower temperature produces less gasses
- Supercritical temperatures result in higher gas production

Results removed – publication of data to come after completion of work

Subcritical vs Supercritical Conditions

- Both spruce and pine have been tested at subcritical (350 C) and supercritical (400 C) conditions
- Prior to steady state, pH at outlet was slightly lower, increasing 1 pH unit during the 1.5h transition to steady state

At supercritical conditions pH is higher Slightly more char and less oil More analysis is needed for further comparison (in progress)

> *Results removed – publication of data to come after completion of work*

Type of analysis for products ordered

Test name test/standard, test method	Oil testing	Char testing	Aqueous testing
			PN-EN ISO
Determination of water content - Karl Fisher	Q/LCA/75/B:2022 (Karl		18122:2023-05 (dry
method	Fisher)	-	matter content)
	ISO 8006 or PN-77/C-	PN-EN ISO 18122:2023-05	ITPE procedure (550°
Determination of ash content	97065	(550° C)	C)
			PN-EN ISO
			16948:2015-07
		PN-EN ISO 16948:2015-07	PN-EN ISO
Determination of C,H, N, S content	O}LCA/81/B:2022	PN-EN ISO 16994:2016-10	16994:2016-10
Determination of carbon residue	Internal method	-	-
Determination of HHV	O}LCA/43/B:2022	PN-EN ISO 18125:2017-07	-
Determination of: S, Cl, Ca, K, P, Si, Na, Al, Mg, Zn,			
As, B, Ba, Cd, Co, Fe, Cr, Ni, Mo, Cu, Ga, Li, Mn,			
Mo, Ni, Pb, Sc, Se, Sr, Ti, V	ITPE procedure	ITPE procedure	ITPE procedure
Sample preparation	-	O}LCA/75/B:2022	-

Final Steps of the Project

- Completion/Repeat of continuous experiments
- Analysis of products and publication
- Summer student project 2024: Investigation of improved separation techniques

Ethyl Acetate Diethyl ether n-Heptane Toluene with Brine Acids/Bases Changes in Density

BIO4 FUELS

Hurdles: Leaks, clogs, milling optimization, pump failure, mill failure

Bio4Fuels

Norwegian Centre for Sustainable Bio-Based Fuel and Energy

fme.bio4fuels@nmbu.no

