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Emissions from the European shipping sector

* 4% CO, emissions in the EU
+ 144 M tCO,
* 46 M t of fossil fuels

Business as usual, 2050

LNG

- 170 M tCOy,

Heavy fuel oil +30%
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18 %

Diesel

Energy consumption

2 EC, 2020. Report from the Commission 2020 Annual Report on CO2 Emissions from Maritime Transport.



European Green Deal

Fuel EU Maritime Initiative:
955% emissions reduction by 2030
Climate neutrality by 2050

GHG intensity targets (g CO, MJ-")

Annual average carbon intensity reduction compared to the average in 2020
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Renewable and low-carbon fuels (RLFs)
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Climate change mitigation of drop-in biofuels for
deep-sea shipping in Norway

Watanabe et al. 2022. Journal of Cleaner Production
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Life Cycle Assessment: a prospective approach

Net CO, emissions (GICO,)
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Technological improvements in carbon-intensive industries, e.g. following Paris Agreement scenario

Based on Sacchi et al., 2022. Prospective Environmental Impact Assessment (premise): a streamlined approach to producing databases for prospective @ NTNU
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Monte Carlo (Uncertainty Analysis)

« Biomass transport distances
» Biofuel conversion

j\ « Biofuel logistics

* Climate metrics

* Fuel combustion

6 Watanabe et al 2022. Climate change mitigation of drop-in biofuels for deep-sea shipping considering prospective life-cycle assessment. Journal of Cleaner Production.



Climate change (and Near-Term Climate Forcers)

GWP100 - conventional GWP100 — near term climate forcers
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Projected decarbonization in the supply chain (2050)

GHG intensity reduction from improvements in electricity, transport, chemicals and materials
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Deep-sea climate change mitigation in Norway

Full substitution of international marine
bunker energy consumption

Potential mitigation: 1 Mt CO,, yr"

Climate impacts without NTCFs
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Country-based assessment of climate change impacts in
Europe up to 2050

EU-27, Switzerland, Norway and the UK
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10 Watanabe et al. 2022. Drop-in and hydrogen-based biofuels for maritime transport: Country-based assessment of climate change impacts in

Europe up to 2050. Energy Conversion and Management.
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2% 6% 13% 26% 59%

FuelEU Maritime targets
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2% 6%  13% 26% 59% 75%

FuelEU Maritime targets
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Hydrogen-based fuels
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Full deployment of just one technology at European Level

% of current energy demand in the EU met by biofuels B % of current WTW emissions mitigated by biofuels WM % WTW mitigation by biofuels with CCS current EU’s energy demand and WTW emissions
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Biofuels or Power-to-X?

Climate change mitigation potentials of on grid-connected Power-to-X fuels and advanced biofuels
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On-grid Power-to-X and Biofuels (current situation)

55 pathways in 3 groups:

800 GHG intensities
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‘Decarbonized’ Power-to-X and biofuels in 2050

120 GHG intensities
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Maximizing climate mitigation in Europe: conversion pathways
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Final remarks

* In Norway, the GHG intensity targets from FuelEU Maritime can be
achieved regardless of the conversion route

* In Europe, the best climate mitigation strategies will rely on specific
conversion routes, feedstocks, and supply chain configurations.

« The prospective analysis highlighted the importance of technological
evolution in the supply chain when pursuing FuelEU Maritime goals.

« Economic, safety, and other aspects associated with transitioning to a
new supply chain infrastructure need to be considered
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Thank youl!

marcos.d.b.watanabe@ntnu.no
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