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From lab-scale to industrial facility

We target process design and scale-up of a biorefinery for the valorization of spruce chips:
 Remove lab-scale steps that cannot be replicated on an industrial scale
 Identify missing steps and design a comprehensive process
 Identify a feasible and valuable path to convert biomass into added-value chemicals
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1. Tested lab-scale concept 2. Translation into a 
feasible industrial plant

3. BFD completed with missing 
steps/units
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Approach: from plug-in models to TEA
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Block Flow Diagram and Simulation tools

 Spruce chips are converted into 
bio-oil and bioethanol in an 
integrated biorefinery.

 Cellulose and hemicellulose 
chains are broken by enzymatic 
treatment. Sugars are fermented 
to bio-ethanol, which is purified 
by rectification.

 Lignin is converted into bio-oil 
through pyrolysis. Oil is stabilized 
by hydrodeoxygenation and 
distilled in different cuts.
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COCO COFE V3.6
AmsterCHEM

ChemSep 8.40

Plant size: 100 000 ton/year 
spruce chips 
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Model implementation
5
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Simulation results: KPIs productivity
6

KPIs (Key Performance Indicators) Notes
Process weight yield 
(including biochar) 0.593 kgproduct/kgBM

Light gas is excluded. The mass yield 
refers to the treated biomass

Process weight yield 
(excluding biochar) 0.457 kgproduct/kgBM Light gas is excluded

Bioethanol yield 0.21 tonethanol/tonBM

Water/moisture is not included in the 
mass used to calculate these yields

Bio-oil yield 0.24 tonbio-oil/tonBM

Biochar yield 0.14 tonbiochar/tonBM

Light gas yield 0.11 tontail gas/tonBM
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Simulation results: KPIs energy
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KPIs (Key Performance Indicators) Notes
Total specific steam demand 2.43 tonsteam/tonBM

Cooling water demand 32.4 tonCW/tonBM

Pyrolysis specific energy 1.65 MJ/kgdry BM
0.46 MWhth/tonBM

In line with Daugaard and Brown (2003)

Total specific thermal duty 0.98 MWhth/tonBM
Includes all the thermal duties (supplied 

heat)
Specific cooling duty 0.56 MWhth/tonBM Includes all cooling duties (removed heat)

Specific electricity 1.45 MWhel/tonBM

Simulations assume 70% efficiency for 
pumps and compressors. Spare pumps are 

neglected.
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Integration & 
Optimization

 On-site enzyme production

 Heat recovery from hot stabilized oil 

 Different H2 sources
 Green H2 production can cover also 

the O2 demand for char oxy-fuel 
combustion

 Steam generation from hot flue gases

  Biochar combustion in air/O2 to 
provide the thermal energy for the 
pyrolysis chamber
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Unit sizing and investment cost

The base equipment cost is calculated as a 
function of the unit size using correlations 
by Guthrie, Ulrich, and Navarrete[1-3].

Costs are actualized to 2023 with CEPCI 
index.

The sizing of upscaled reactors from batch lab scale data is obtained based on the residence time 
and circulating volume flow (Q).

[1]. Guthrie, 1974. Process Plant Estimating, Evaluation and Control
[2] Ulrich, G. D., 1984. A Guide to Chemical Engineering Process Design and Economics. John Wiley and Sons.
[3] Navarrete, P. F., 1995. Planning, Estimating, and Control of Chemical Construction Projects. Marcel Dekker, Inc.

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑄𝑄 ⋅ 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟
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The total investment cost is obtained by summing the base equipment costs, the installation 
costs, and indirect investment costs using correction factors (f).

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑪𝑪𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 + 𝑪𝑪𝒆𝒆𝒆𝒆𝒊𝒊𝒆𝒆𝒊𝒊𝒊𝒊𝒊𝒊 + 𝑪𝑪𝒆𝒆𝒆𝒆𝒊𝒊𝒆𝒆𝒊𝒊𝒆𝒆𝒊𝒊𝒆𝒆

𝑪𝑪𝒆𝒆𝒆𝒆𝒊𝒊𝒆𝒆𝒊𝒊𝒊𝒊𝒊𝒊 = 𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 ⋅ (𝑓𝑓𝑒𝑒𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑒𝑒𝑡𝑡𝑒𝑒 + 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 +
𝑓𝑓𝑒𝑒𝑒𝑒𝑟𝑟𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡𝑖𝑖𝑡𝑡𝑒𝑒𝑡𝑡𝑒𝑒 + 𝑓𝑓𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑟𝑟𝑎𝑎 + 𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑒𝑒𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑏𝑏𝑒𝑒𝑒𝑒𝑖𝑖𝑏𝑏𝑒𝑒𝑒𝑒𝑝𝑝 +

𝑓𝑓𝑎𝑎𝑖𝑖𝑟𝑟𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖 + 𝑓𝑓𝑒𝑒𝑒𝑒𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑟𝑟𝑟𝑟)

𝑪𝑪𝒆𝒆𝒆𝒆𝒊𝒊𝒆𝒆𝒊𝒊𝒆𝒆𝒊𝒊𝒆𝒆 = 𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 ⋅ (𝑓𝑓𝑟𝑟𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒 & 𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑓𝑓𝑒𝑒𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑡𝑡𝑒𝑒
+𝑓𝑓𝑖𝑖𝑟𝑟𝑝𝑝𝑖𝑖𝑖𝑖 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑓𝑓𝑒𝑒𝑡𝑡𝑒𝑒𝑡𝑡𝑟𝑟𝑖𝑖𝑒𝑒𝑡𝑡𝑡𝑡𝑟𝑟 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑓𝑓𝑒𝑒𝑡𝑡𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑝𝑝𝑟𝑟𝑒𝑒𝑒𝑒𝑎𝑎)
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Operating costs
Operating costs are estimated according to Turton[1]. 

Raw material Specific cost 
($/ton)

Source

Spruce chips 56.7 [4]

2-Naphtol 3500 [5]

Hydrogen
blue

green
grey

3500
7250
1500

[6]

NH3 410 [5]

SO2 276 [5]

Corn steep liquor (CSL) 50 [5]

DAP 895 [5]

Ethylene glycol 860 [5]

Oxygen from ASU 250 [6]

Utility Specific cost Source

Natural gas 20 $/MWh [2]

Electricity 61.3 $/MWh [3]

Cooling water 0.354 $/GJ [1]

[1] Turton, R. Analysis, Synthesis and Design of Chemical Processes. 5th Edition, Prentice Hall
[2] https://tradingeconomics.com/commodity/eu-natural-gas; 
[3] SSB Electricity prices. https://www.ssb.no/en/energi-og-industri/energi/statistikk/elektrisitetspriser

[4] NMBU. https://publikasjoner.nve.no/rapport/2012/rapport2012_32.pdf.
[5] D. Bbosa, M. Mba-Wright, R.C. Brown, 2018, Biofuels, Bioproducts & Biorefining, 12, 497–509 
[6] ] J.M.M Arcos and D.M.F. Santos, 2023, Gases, 3, 25–46. 
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Average over last 10 years 
(data by Statistisk 
sentralbyrå)
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Sensitivity analysis on H2 source

Sensitivity analysis on hydrogen source (for HDO) and air/oxyfuel combustion has 
been performed. 

Case H2  source Combustion type
CS1 Grey Air
CS2 Grey Oxy-fuel (O2 from Air Separation Unit)
CS3 Blue Air
CS4 Blue Oxy-fuel (O2 from Air Separation Unit)
CS5 Green Oxy-fuel (integrated H2 and O2 

production via electrolysis)

Assumption for oxy-fuel combustion: the boiler volume is reduced by ¾ due to the 
absence of nitrogen.
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Cash flow

• We investigate the MSPR (Minimum Selling Price Ratio) for bio-oil and bio-ethanol to target 
an Internal Rate of Return (IRR) equal to 10% or 15%.

• MSPR is obtained using the actual selling prices of the corresponding fossil-based product 
as a reference. 

Fossil-based 
Product

Selling price 
($/liter)

Source

Ethanol 0.80
[1]Gasoline 0.79

Diesel 0.86
Three options for hydrogen: grey, blue, and 
green.

[1] SSB Norway. https://www.ssb.no/en/energi-og-industri/olje-og-gass/statistikk/sal-av-petroleumsprodukt

MSP (same): same price ratio assumed for 
both bio-oil and bio-ethanol
MSP (oil) and MSP (ethanol): price ratio 
calculated only for the commodity in 
brackets. The price for the other product is 
fixed to the current value.

12



FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

13 Reference case-study: green H2 and air combustion

• Saccharification, 
fermentation, and pyrolysis 
are associated with high 
large CAPEX due to the high 
required residence time.

• HDO is a major contribution 
being a high-pressure 
catalytic chamber.

CAPEX breakdown
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OPEX breakdown

Raw materials are the key 
contribution to the operating 
costs.

Thanks to the proposed energy 
integrations, the demand for 
external utilities is minimized.

14

Reference case-study: green H2 and air combustion
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OPEX breakdown: raw materials

• The share of raw materials cost associated with H2 significantly increases when blue or green H2 are used.
• 2-naphtol can be potentially replaced with phenolics to be recovered from the produced bio-oil.

15

13%

42%
26%

Hydrogen

42%

GREY H2 BLUE H2 GREEN H2
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Results: CAPEX and OPEX
Case 
study

Hydrogen 
color

Combustion CAPEX 
[M$]

Raw materials 
[M$/year]

Utilities
[M$/year]

Total OPEX
[M$/year]

CS1 Grey Air 179 22.04 1.96 76.48
CS2 Oxy-fuel 169 29.73 1.96 83.99
CS3 Blue Air 179 25.89 1.96 81.22
CS4 Oxy-fuel 169 33.58 1.96 88.73
CS5 Green Oxy-fuel 179 33.02 1.96 88.04

• Oxy-fuel combustion provides a 5% reduction in the total CAPEX due to the lower boiler volume.
• Oxygen for ASU results in a 10% increase in the total OPEX compared to air combustion.
• Green hydrogen results in a 15% increase in the total OPEX with respect to grey hydrogen and air 

combustion.
• CS5 provides slightly better results than CS4.

16
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Results: MSPR
Target: IRR= 10%

MSPR (same) MSPR (ethanol) MSPR (oil)

• All scenarios require a MSP for both bio-ethanol and bio-oil over two times the actual prices of the 
corresponding fossil-derived products.

• Using green hydrogen requires a 9% and 4.5% higher MSPR with respect to grey and blue hydrogen, respectively.
• Green hydrogen is currently much less economically viable, but what about the effect on CO2 eq. emissions?

17
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Environmental assessment
18

An environmental analysis (GWP100 impact category only) of the process was performed in cooperation with Prof. Cherubini and Dr. 
Ballal.

KEY ASSUMPTIONS
• System boundaries set to the process itself (gate-to-gate)
• Electricity source: Norwegian National electricity mix
• Grey hydrogen: SMR of natural gas
• Green hydrogen: offshore wind energy for electricity production

-30.9%
-44.3%

Grey H2              Blue H2            Green H2

7%25%49%
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CO2 capture: towards negative CO2 emissions
• CO2-rich streams from light gas combustion (6 vol%) and char combustion (14.5 vol%) have 

potential for CO2 capture.
• The two stacks have been mixed and conveyed to a conventional amine absorption plant.
• Two solvents have been considered: MEA and CESAR-1

19

Simulation software: CO2SIM

ASSUMPTIONS
• 90% CO2 capture
• Packing: Mellapak 2X
• Sensitivity analysis to determine optimal L/G 

ratio and absorber packing height to minimize 
the Specific Reboiler Duty (SRD)
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CO2 capture plant optimization 
20

MEA CESAR-1

Using CESAR-1:
• the SRD of the optimized capture plant reduces from 3.55 down to 3.01 MJ/kg CO2 capt. (-15%)
• The required solvent flow is also reduced by a factor of 45%
• Conversely, a higher packing is needed due to slower kinetics (22m versus 16m)
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CO2 capture plant costs
21

Index MEA CESAR CESAR vs 
MEA

FCI (M$) 23.05 22.69 -1.5%
Total OPEX 
(M$/year) 12.61 12.16 -3.5%

Utilities (M$/year) 3.43 2.97 -13.2%
Steam (M$/year) 3.09 2.62 -15.2%

Electricity 
(M$/year) 0.25 0.28 +10.0%

Raw materials 
(M$/year) 0.09 0.24 2.61 times

Total cost 
(M$/year) 12.61 12.16 -3.5%

Cost of utilities
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Is the cost of CO2 capture sustainable for the 
designed biorefinery?

• Biorefinery CAPEX increase when integrating the capture plant: + 12.7%
• Biorefinery OPEX increase when integrating the capture plant: + 15.9%

22

Breakeven carbon tax: 240 $/ton CO2

• The high specific CO2 capture cost in this application is due to 
the limited volume of treated flue gas (economy of scale)

• Integrated capture plant with flue gases from other facilities at 
close distance is a great option to enhance viability (industrial 
symbiosis)
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Conclusions
• Successful scale-up modelling of an integrated biorefinery for combined 

bioethanol and bio-oil production from spruce chips.
• The proposed integrated biorefinery minimizes biomass waste through the 

complete valorization of all biomass constituents, including lignin, and promoting 
energy recovery.

• If grey hydrogen is exploited, the Minimum Selling Price required for ethanol and 
bio-oil to achieve a IRR=10% is 2.14 times the actual price for fossil-derived 
sources.

• Cooperation with SP1 to combine economic and environmental considerations.
• Good potential for CO2 capture integration toward negative CO2 emissions.
• Need to discuss the potential for industrial symbiosis: how to effectively link this 

biorefinery with other plants?
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Conferences and publications
24

Upcoming presentations

Economic and environmental assessment CO2 capture integration

Strategies and approaches for the 
modelling of a biorefinery
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