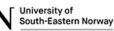


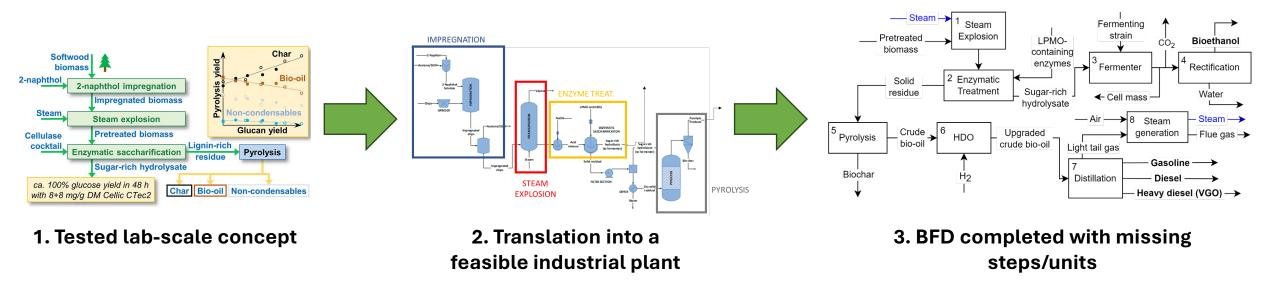
BIO4 FUELS

Bio4Fuels

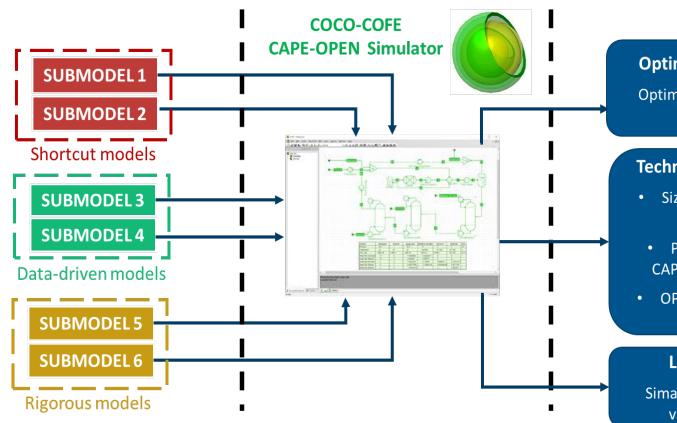
Norwegian Centre for Sustainable Bio-Based Fuel and Energy

Modelling of an integrated biorefinery for spruce valorization and preliminary Techno-economic assessment (TEA)


Matteo Gilardi, Filippo Bisotti, Olaf T. Berglihn, Bernd Wittgens


From lab-scale to industrial facility

2


We target process **design and scale-up** of a **biorefinery for the valorization of spruce chips**:

- Remove lab-scale steps that cannot be replicated on an industrial scale
- Identify missing steps and design a comprehensive process
- Identify a feasible and valuable path to convert biomass into added-value chemicals

Approach: from plug-in models to TEA

Optimization & energy integration Optimization tools in Excel, Matlab, and Python

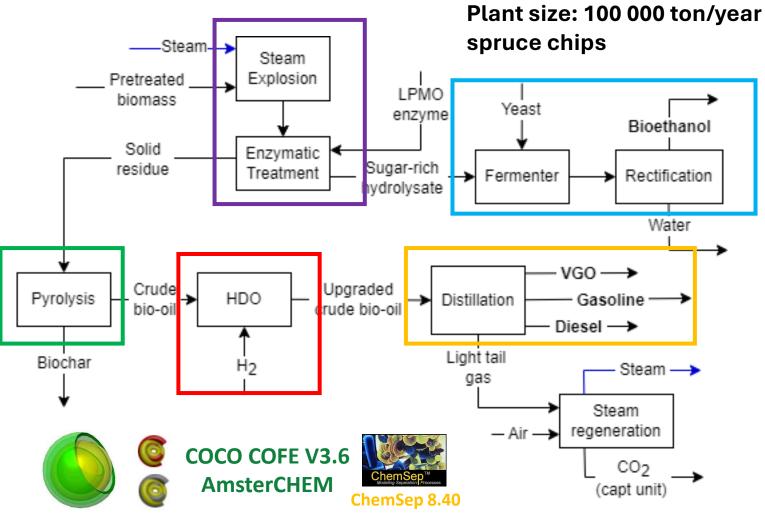
Techno-economic assessment (TEA)

- Sizing based on volumetric flows and residence time
- Published correlations to estimate CAPEX based on size, material, pressure
- OPEX from utilities and raw materials consumption (flowsheet)

Life-cycle assessment (LCA)

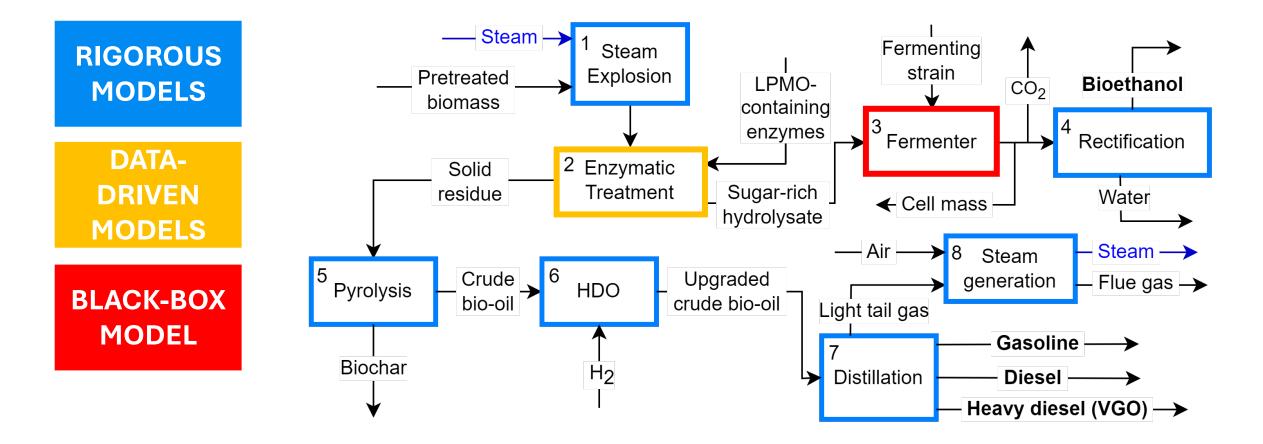
SimaPro software to extract data from various international databases

SímaPro



Block Flow Diagram and Simulation tools

Spruce chips are converted into bio-oil and bioethanol in an integrated biorefinery.


4

- Cellulose and hemicellulose chains are broken by enzymatic treatment. Sugars are fermented to bio-ethanol, which is purified by rectification.
- Lignin is converted into bio-oil through pyrolysis. Oil is stabilized by hydrodeoxygenation and distilled in different cuts.

Model implementation

Simulation results: KPIs productivity

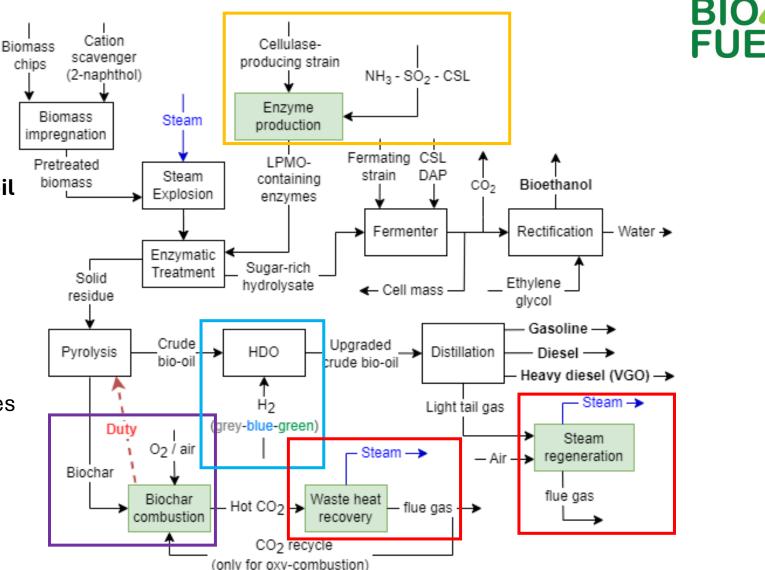
KPIs (Key Performar	nce Indicators)	Notes	
Process weight yield (including biochar)	0.593 kg _{product} /kg _{BM}	Light gas is excluded. The mass yield refers to the treated biomass	
Process weight yield (excluding biochar)	0.457 kg _{product} /kg _{BM}	Light gas is excluded	
Bioethanol yield	0.21 ton _{ethanol} /ton _{BM}		
Bio-oil yield	0.24 ton _{bio-oil} /ton _{BM}	Water/moisture is not included in the	
Biochar yield	0.14 ton _{biochar} /ton _{BM}	mass used to calculate these yields	
Light gas yield	0.11 ton _{tail gas} /ton _{BM}		

Simulation results: KPIs energy

KPIs (Key Performanc	e Indicators)	Notes	
Total specific steam demand2.43 ton2.43 tonBM			
Cooling water demand	32.4 ton _{CW} /ton _{BM}		
Pyrolysis specific energy	1.65 MJ/kg _{dry BM} 0.46 MWh _{th} /ton _{BM}	In line with Daugaard and Brown (2003)	
Total specific thermal duty	0.98 MWh _{th} /ton _{BM}	Includes all the thermal duties (supplied heat)	
Specific cooling duty	0.56 MWh _{th} /ton _{BM}	Includes all cooling duties (removed heat)	
Specific electricity	1.45 MWh _{el} /ton _{BM}	Simulations assume 70% efficiency for pumps and compressors. Spare pumps are neglected.	

8 **Integration & Optimization**

On-site enzyme production


Heat recovery from hot stabilized oil

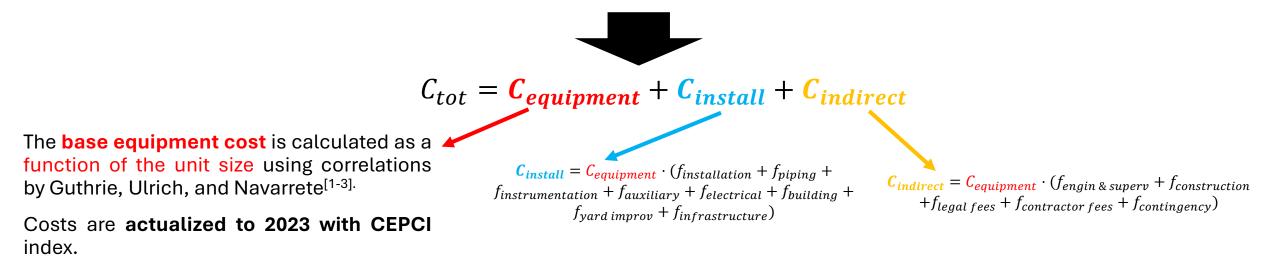
Different H₂ sources

 \checkmark Green H₂ production can cover also the O_2 demand for char oxy-fuel combustion

Steam generation from hot flue gases

Biochar combustion in air/O₂ to provide the thermal energy for the pyrolysis chamber

FUFI'S


9

Unit sizing and investment cost

The **sizing** of **upscaled reactors from batch lab scale data** is obtained based on the **residence time** and **circulating volume flow (Q)**.

$$Vol = Q \cdot \tau_{res}$$

The total investment cost is obtained by summing the **base equipment costs**, the **installation costs**, and **indirect investment costs** using **correction factors** (*f*).

[2] Ulrich, G. D., 1984. A Guide to Chemical Engineering Process Design and Economics. John Wiley and Sons.

[3] Navarrete, P. F., 1995. Planning, Estimating, and Control of Chemical Construction Projects. Marcel Dekker, Inc.

Source

[4]

Operating costs

Operating costs are estimated according to Turton^[1].

Raw material

Spruce chips

Direct manufacturing costs				
Raw materials	Cost of amine make-up + water make-up			
Utilities	Cost of natural gas + electricity + cooling water			
Operating labour (CoL)	Annual operator salary* total number of operators			
	required by the site			
Direct Supervisory and clerical labour	$0.18 \cdot C_{OL}$			
Maintenance and repair	$0.07 \cdot FCI$			
Operating supplies	$0.009 \cdot FCI$			
Laboratory charges	$0.15 \cdot C_{OL}$			
Fixed ma	nufacturing costs			
Depreciation	$0.1 \cdot FCI$			
Local taxes and insurance	$0.03 \cdot FCI + 0.01 \cdot FCI$			
Plant overhead costs	$0.708 \cdot C_{OL} + 0.036 \cdot FCI$			
General expenses				
Administrative costs	$0.177 \cdot C_{\mathit{OL}} + 0.009 \cdot FCI$			

Average over last 10 years	Utility	Specific cost	Source
(data by Statistisk sentralbyrå)	Natural gas	20 \$/MWh	[2]
schudbyrdy	Electricity	61.3 \$/MWh	[3]
	Cooling water	0.354 \$/GJ	[1]

	opreio ompo	••••	r.1
	2-Naphtol	3500	[5]
	Hydrogen blue green grey	3500 7250 1500	[6]
	NH ₃	410	[5]
	SO ₂	276	[5]
	Corn steep liquor (CSL)	50	[5]
	DAP	895	[5]
	Ethylene glycol	860	[5]
	Oxygen from ASU	250	[6]

FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

Specific cost

(\$/ton)

56.7

[4] NMBU. https://publikasjoner.nve.no/rapport/2012/rapport2012_32.pdf.

[5] D. Bbosa, M. Mba-Wright, R.C. Brown, 2018, Biofuels, Bioproducts & Biorefining, 12, 497–509

[6]] J.M.M Arcos and D.M.F. Santos, 2023, Gases, 3, 25-46.

[1] Turton, R. Analysis, Synthesis and Design of Chemical Processes. 5th Edition, Prentice Hall

[2] https://tradingeconomics.com/commodity/eu-natural-gas;

[3] SSB Electricity prices. https://www.ssb.no/en/energi-og-industri/energi/statistikk/elektrisitetspriser

Sensitivity analysis on H₂ source

Sensitivity analysis on hydrogen source (for HDO) **and air/oxyfuel combustion** has been performed.

Case	H ₂ source	Combustion type
CS1	Grey	Air
CS2	Grey	Oxy-fuel (O ₂ from Air Separation Unit)
CS3	Blue	Air
CS4	Blue	Oxy-fuel (O ₂ from Air Separation Unit)
CS5	Green	Oxy-fuel (integrated H ₂ and O ₂ production via electrolysis)

Assumption for oxy-fuel combustion: the **boiler volume is reduced by** ³/₄ due to the absence of nitrogen.

Cash flow

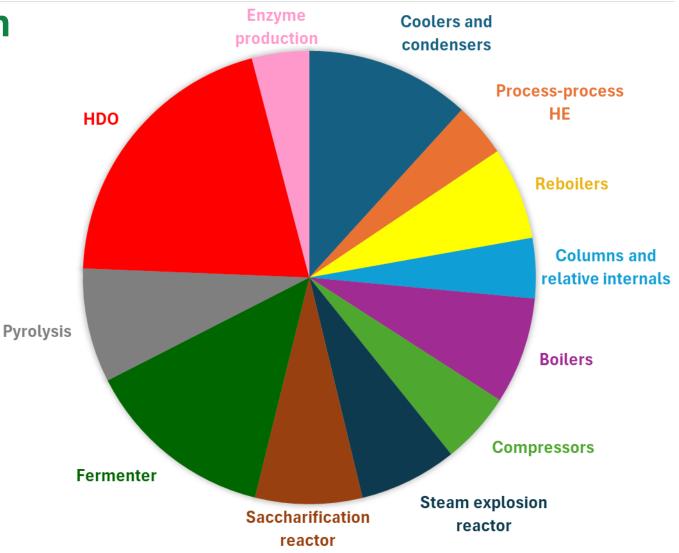
- We investigate the MSPR (Minimum Selling Price Ratio) for bio-oil and bio-ethanol to target an Internal Rate of Return (IRR) equal to 10% or 15%.
- MSPR is obtained using the actual selling prices of the corresponding fossil-based product as a reference.

MSP (same): same price ratio assumed for both bio-oil and bio-ethanol

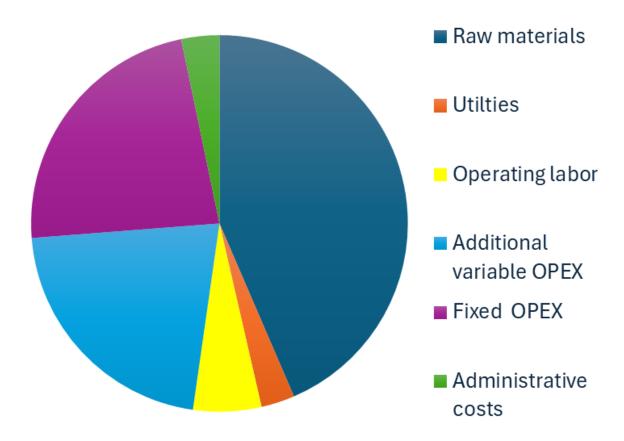
MSP (oil) and MSP (ethanol): price ratio calculated only for the commodity in brackets. The price for the other product is fixed to the current value.

Three options for hydrogen: grey, blue, and green.

Fossil-based Product	Selling price (\$/liter)	Source
Ethanol	0.80	
Gasoline	0.79	[1]
Diesel	0.86	


Reference case-study: green H₂ and air combustion

 Saccharification, fermentation, and pyrolysis are associated with high large CAPEX due to the high required residence time.


CAPEX breakdown

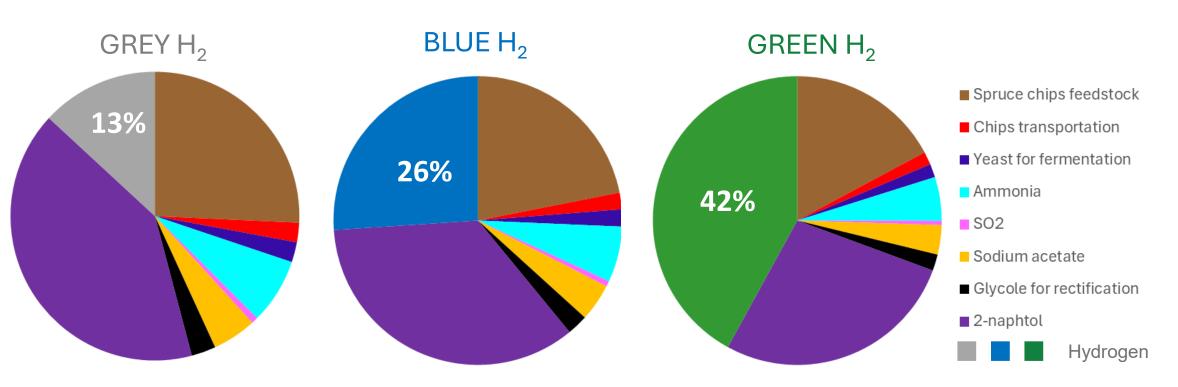
• HDO is a major contribution being a high-pressure catalytic chamber.

OPEX breakdown

Reference case-study: green H₂ and air combustion

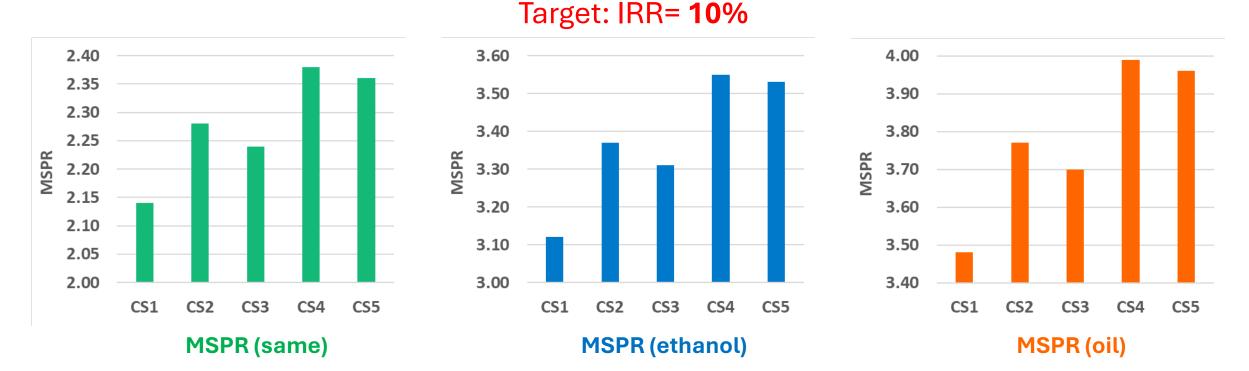
Raw materials are the key contribution to the operating costs.

Thanks to the proposed energy integrations, the **demand for external utilities is minimized**.


FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

OPEX breakdown: raw materials

- The share of raw materials cost associated with H_2 significantly increases when blue or green H_2 are used.
- 2-naphtol can be potentially replaced with phenolics to be recovered from the produced bio-oil.

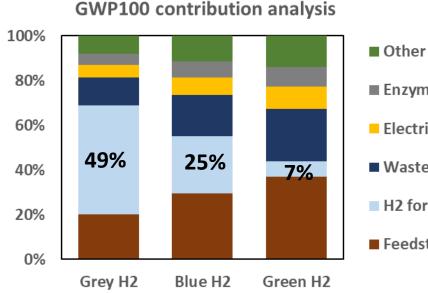

Results: CAPEX and OPEX

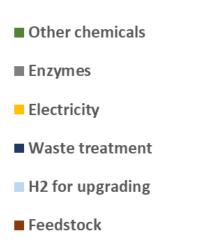
Case study	Hydrogen color	Combustion	CAPEX [M\$]	Raw materials [M\$/year]	Utilities [M\$/year]	Total OPEX [M\$/year]
CS1	Grey	Air	179	22.04	1.96	76.48
CS2		Oxy-fuel	169	29.73	1.96	83.99
CS3	Blue	Air	179	25.89	1.96	81.22
CS4		Oxy-fuel	169	33.58	1.96	88.73
CS5	Green	Oxy-fuel	179	33.02	1.96	88.04

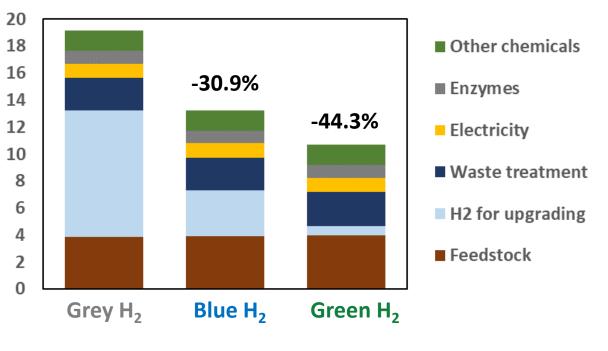
- Oxy-fuel combustion provides a 5% reduction in the total CAPEX due to the lower boiler volume.
- Oxygen for ASU results in a 10% increase in the total OPEX compared to air combustion.
- Green hydrogen results in a 15% increase in the total OPEX with respect to grey hydrogen and air combustion.
- CS5 provides slightly better results than CS4.

Results: MSPR

- All scenarios require a MSP for both bio-ethanol and bio-oil over two times the actual prices of the corresponding fossil-derived products.
- Using green hydrogen requires a 9% and 4.5% higher MSPR with respect to grey and blue hydrogen, respectively.
- Green hydrogen is currently much less economically viable, but what about the effect on CO₂ eq. emissions?

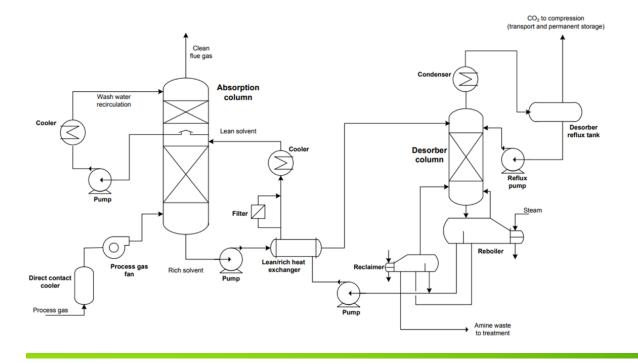

Environmental assessment




An environmental analysis (GWP100 impact category only) of the process was performed in cooperation with Prof. Cherubini and Dr. Ballal.

KEY ASSUMPTIONS

- System boundaries set to the process itself (gate-to-gate)
- Electricity source: Norwegian National electricity mix
- Grey hydrogen: SMR of natural gas
- Green hydrogen: offshore wind energy for electricity production

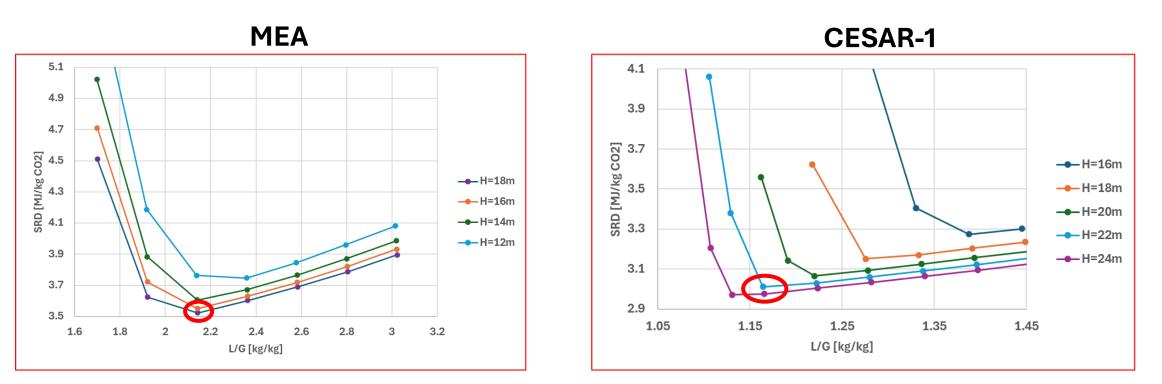


GWP 100 impacts (kton CO₂/year)

CO₂ capture: towards negative **CO**₂ emissions

- CO₂-rich streams from light gas combustion (6 vol%) and char combustion (14.5 vol%) have potential for CO₂ capture.
- The two stacks have been mixed and conveyed to a conventional amine absorption plant.
- Two solvents have been considered: MEA and CESAR-1

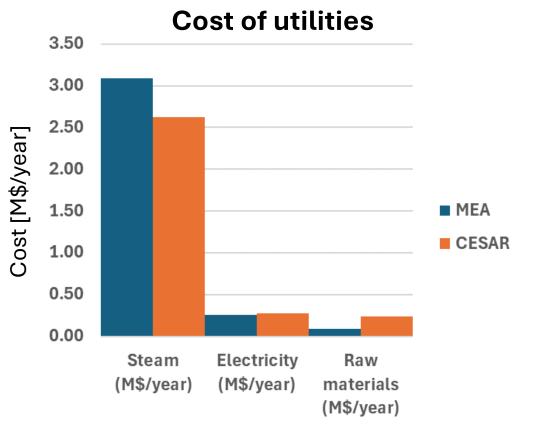
Simulation software: CO2SIM



ASSUMPTIONS

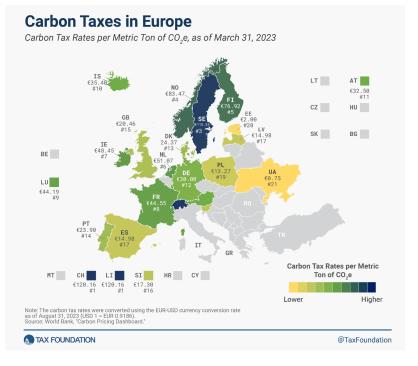
- 90% CO_2 capture
- Packing: Mellapak 2X
- Sensitivity analysis to determine optimal L/G ratio and absorber packing height to minimize the Specific Reboiler Duty (SRD)

CO₂ capture plant optimization


Using CESAR-1:

- the SRD of the optimized capture plant reduces from 3.55 down to 3.01 MJ/kg CO₂ capt. (-15%)
- The required **solvent flow** is also **reduced by** a factor of **45%**
- Conversely, a higher packing is needed due to slower kinetics (22m versus 16m)

CO₂ capture plant costs


Index	MEA	CESAR	CESAR vs MEA
FCI (M\$)	23.05	22.69	-1.5%
Total OPEX (M\$/year)	12.61	12.16	-3.5%
Utilities (M\$/year)	3.43	2.97	-13.2%
Steam (M\$/year)	3.09	2.62	-15.2%
Electricity (M\$/year)	0.25	0.28	+10.0%
Raw materials (M\$/year)	0.09	0.24	2.61 times
Total cost (M\$/year)	12.61	12.16	-3.5%

Is the cost of CO2 capture sustainable for the designed biorefinery?

• Biorefinery OPEX increase when integrating the capture plant: + 15.9%

Breakeven carbon tax: 240 \$/ton CO₂

- The high specific CO₂ capture cost in this application is due to the limited volume of treated flue gas (economy of scale)
- Integrated capture plant with flue gases from other facilities at close distance is a great option to enhance viability (industrial symbiosis)

Conclusions

- Successful scale-up modelling of an integrated biorefinery for combined bioethanol and bio-oil production from spruce chips.
- The proposed integrated biorefinery minimizes biomass waste through the complete valorization of all biomass constituents, including lignin, and promoting energy recovery.
- If grey hydrogen is exploited, the Minimum Selling Price required for ethanol and bio-oil to achieve a IRR=10% is 2.14 times the actual price for fossil-derived sources.
- Cooperation with SP1 to combine economic and environmental considerations.
- Good potential for CO₂ capture integration toward negative CO₂ emissions.
- Need to discuss the potential for industrial symbiosis: how to effectively link this biorefinery with other plants?

Conferences and publications

Strategies and approaches for the modelling of a biorefinery

Matteo Gilardi, Filippo Bisotti, Olaf T. Berglihn, Roman Tschentscher, Line D. Hansen, Svein J. Horn, Anikó Várnai, Bernd Wittgens-

From laboratory scale to innovative spruce-based biorefinery. Note I: Conceptual process design and simulation

From laboratory scale to innovative spruce-based biorefinery. Note II: Preliminary techno-economic assessment

Upcoming presentations

Economic and environmental assessment

 CO_2 capture integration

Bio4Fuels

Norwegian Centre for Sustainable Bio-Based Fuel and Energy

fme.bio4fuels@nmbu.no

